Two-dimensional super-resolution spectral analysis applied to SAR images

1998 ◽  
Vol 145 (5) ◽  
pp. 281 ◽  
Author(s):  
D. Pastina ◽  
A. Farina ◽  
J. Gunning ◽  
P. Lombardo
Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liliana Barbieri ◽  
Huw Colin-York ◽  
Kseniya Korobchevskaya ◽  
Di Li ◽  
Deanna L. Wolfson ◽  
...  

AbstractQuantifying small, rapidly evolving forces generated by cells is a major challenge for the understanding of biomechanics and mechanobiology in health and disease. Traction force microscopy remains one of the most broadly applied force probing technologies but typically restricts itself to slow events over seconds and micron-scale displacements. Here, we improve >2-fold spatially and >10-fold temporally the resolution of planar cellular force probing compared to its related conventional modalities by combining fast two-dimensional total internal reflection fluorescence super-resolution structured illumination microscopy and traction force microscopy. This live-cell 2D TIRF-SIM-TFM methodology offers a combination of spatio-temporal resolution enhancement relevant to forces on the nano- and sub-second scales, opening up new aspects of mechanobiology to analysis.


2010 ◽  
Vol 52 (2) ◽  
pp. 303-313 ◽  
Author(s):  
Adil Jarrah ◽  
Jean-Marie Nianga ◽  
Alain Iost ◽  
Gildas Guillemot ◽  
Denis Najjar

2021 ◽  
Author(s):  
Mingbo Chi ◽  
Xinxin Han ◽  
Yang Xu ◽  
Huaming Xing ◽  
Yongshun Liu ◽  
...  

Hilgardia ◽  
1988 ◽  
Vol 56 (3) ◽  
pp. 1-28 ◽  
Author(s):  
M. Bazza ◽  
R. H. Shumway ◽  
D. R. Nielsen

Sign in / Sign up

Export Citation Format

Share Document