Improvement in target detection performance of pulse coded Doppler radar based on multicarrier modulation with fast Fourier transform (FFT)

2004 ◽  
Vol 151 (1) ◽  
pp. 11 ◽  
Author(s):  
N.N.S.S.R.K. Prasad ◽  
V. Shameem ◽  
U.B. Desai ◽  
S.N. Merchant
2021 ◽  
Vol 13 (4) ◽  
pp. 701 ◽  
Author(s):  
Binbin Wang ◽  
Hao Cha ◽  
Zibo Zhou ◽  
Bin Tian

Clutter cancellation and long time integration are two vital steps for global navigation satellite system (GNSS)-based bistatic radar target detection. The former eliminates the influence of direct and multipath signals on the target detection performance, and the latter improves the radar detection range. In this paper, the extensive cancellation algorithm (ECA), which projects the surveillance channel signal in the subspace orthogonal to the clutter subspace, is first applied in GNSS-based bistatic radar. As a result, the clutter has been removed from the surveillance channel effectively. For long time integration, a modified version of the Fourier transform (FT), called long-time integration Fourier transform (LIFT), is proposed to obtain a high coherent processing gain. Relative acceleration (RA) is defined to describe the Doppler variation results from the motion of the target and long integration time. With the estimated RA, the Doppler frequency shift compensation is carried out in the LIFT. This method achieves a better and robust detection performance when comparing with the traditional coherent integration method. The simulation results demonstrate the effectiveness and advantages of the proposed processing method.


2021 ◽  
Vol 21 (2) ◽  
pp. 111-118
Author(s):  
Young-Jae Choi ◽  
In-Sik Choi

In operating a wind turbine, both predictive and condition-based maintenances are required to minimize the downtime caused by maintenance. The imbalance of rotor rotational speed is an important factor for diagnosing wind turbine failures. The rotational speed imbalance can be caused by accumulated damage or the accumulation of ice, dust, and moisture. In this paper, we proposed a method for detecting the rotational speed imbalance of a wind turbine using a Doppler radar. We calculated the difference in the rotational speed for different times using spectrograms obtained by observing the wind turbine with a Doppler radar and determined the rotational speed imbalance using the fast Fourier transform. The performance of the proposed algorithm was verified using both synthetic and numerical data.


Sign in / Sign up

Export Citation Format

Share Document