scholarly journals Performance evaluation of a transformerless multiphase electric submersible pump system

2014 ◽  
Vol 2014 (8) ◽  
pp. 407-414 ◽  
Author(s):  
Ahmed A. Hakeem ◽  
Ahmed Abbas Elserougi ◽  
Ayman Samy Abdel-Khalik ◽  
Shehab Ahmed ◽  
Ahmed Mohamed Massoud
Author(s):  
Robert Adams ◽  
Jinjiang Xiao ◽  
Michael Cross ◽  
Max Deffenbaugh

Switched reluctance motors may be advantageous when used as the primary motor for an electric submersible pump system.  They are less susceptible to jamming failures due to their high starting torque and ability to reverse direction.  Driving these motors requires well-timed pulse waveforms and precise control of the motor based on its rotational position.  In general, voltage-based sensing and control systems at the surface see highly unpredictable waveforms with excessive ringing behaviour due to the impedance characteristics of the long cabling between the surface controller and the downhole motor system.  In this work, a system is detailed which monitors the current waveforms on the motor coil excitation conductors at the surface as a source of motor performance feedback and control.  State-space modelling of the system shows stable current waveforms at the surface controller for both short and long interconnect cable systems.  A laboratory demonstration of the surface controller, interconnect cabling, and motor system is shows excellent agreement with the current and voltage waveforms predicted by the state-space system model.


1992 ◽  
Vol 114 (1) ◽  
pp. 47-53 ◽  
Author(s):  
J. R. Shadley ◽  
J. R. Sorem

Stability is examined with respect to the torque in the elastic element between motor and load in semi-definite systems exhibiting unstable self-excitation during start-up. Equations are provided for optimizing a motor-mounted damped absorber to minimize the torque fluctuations in the shafting between motor and load in semi-definite systems. Minimum damper inertia needed to stabilize the system is computed assuming optimum damping. Stability and damper optimization equations are applied to two cases involving unstable self-excitation in electric submersible pump systems. In the first case, unstable growth of torque amplitude in shafting between an electric induction motor and an inertial load was observed during start-up in laboratory testing. A computer simulation of the system dynamics demonstrated that the torque could be stabilized by adding a damped absorber to the motor. In a computer simulation for the second case, unstable torque fluctuations in the shafting of an electric submersible pump system were dramatically reduced by the addition of a damped absorber; however, stability was not achieved until the damper inertia was sufficiently increased. Stability is not always required for safe operation of electric submersible pumps. A computational model of the system dynamics during startup should be used to determine when stability is required.


2021 ◽  
Author(s):  
Robert Adams ◽  
Jinjiang Xiao ◽  
Michael Cross ◽  
Max Deffenbaugh

Abstract Switched reluctance motors may be advantageous when used as the primary motor for an electric submersible pump system. They are less susceptible to jamming failures due to their high starting torque and ability to reverse direction. Driving these motors requires well-timed pulse waveforms and precise control of the motor based on its rotational position. It is demonstrated that the pulses required to drive switched reluctance motors can still be applied over along cable lengths. Additionally, the current at the surface can be used to monitor and control the operation of the motor downhole, even with long cable lengths separating the surface power source and downhole motor.


2014 ◽  
Author(s):  
G. Morrison ◽  
S. Pirouspanah ◽  
K. Kirland ◽  
S.L. Scott ◽  
L.J. Barrios

Author(s):  
S.S. Ulianov ◽  
◽  
R.I. Sagyndykov ◽  
D.S. Davydov ◽  
S.A. Nosov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document