mechanical seal
Recently Published Documents


TOTAL DOCUMENTS

580
(FIVE YEARS 93)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Jiamin Zou ◽  
Yin Luo ◽  
Yuejiang Han ◽  
Yakun Fan

Mechanical seal failure has a great negative impact on the operation of a centrifugal pump system. A method to analyze the stator current characteristics of the motor in a centrifugal pump system is proposed to monitor the internal flow of the centrifugal pump and to identify the failure status of the mechanical seal. Experiments were conducted under different mechanical seal states. Based on sensorless technology, the stator current signal of the motor is collected, processed by windowing function, anti-aliasing filter, singular value decomposition, Hilbert–Huang transform, and the marginal spectrum of correlation quantity is drawn. The results show that according to the external characteristic curve of the centrifugal pump, after the failure of the mechanical seal, the head and efficiency of the centrifugal pump decrease, and the head is greatly affected by the degree of failure, while the degree of mechanical seal failure has little effect on the shaft power of the centrifugal pump; the centrifugal pump has good operation stability under design conditions or near slightly large flow; the stability of centrifugal pump operation decreases with the aggravation of mechanical seal failure; the corresponding maximum amplitude in the marginal spectrum can be used as an index to diagnose the damage degree of the mechanical seal.


2021 ◽  
Author(s):  
Abdullah Al-Aiderous

Abstract The objective of this paper is to showcase the successful and innovative troubleshooting data analysis techniques in one of the gas compression systems in upstream gas oil separation plants (GOSP-A). The gas compression system using gas compressors, dry gas seal systems and due point controls is used in almost all of upstream operation. These proven data analysis techniques were used to tackle major and chronic issues associated with gas compression system operation that lead to excessive flaring, mechanical seal failures, solidification, hydrate formation and off-specification products. Dry Gas mechanical seals are an important key element in gas compression and its lifetime represents a concern to the operation personnel. Most gas compression systems have a mechanical seal lifetime of 2 years which in some cases limit production, increase the potential of unnecessary flaring and increase OPEX significantly. In addition, solidification due to constant liquid carry over result in a wide range of undesirable results such as blockages that constrain production rates and result in safety concerns. In this paper, comprehensive data analysis of the potential root causes that aggravate undesired premature mechanical seal failure, material solidification, equipment damage and off-specification gas products will be discussed along with solutions to minimize expected impact. For example, improper product specification in some applications have been found to promote seal failures, corrosion, solidification and incur additional flaring which is both costly and environmentally undesirable. In addition, after extensive analysis improper operation practices during compressor startups, steady state operation and gas conditioning have been linked with premature compressor failures, product off spec and safety device failures. The field trial proved the effectiveness of the proposed innovative troubleshooting data analysis techniques in reinstating the gas compression unit in GOSP-A to its recommended design conditions, eliminated compressors and mechanical seal failures and avoided the off-specification products at the lowest operating cost. This innovative technique was based on deep and extensive process data analysis, evaluating operating and design data, reviewing international standards, benchmarking against other facilities, process simulation using Hysys, and finally the actual field trial.


2021 ◽  
Author(s):  
Wei Zheng ◽  
Jianjun Sun ◽  
Chenbo Ma ◽  
Qiuping Yu

Abstract Based on the percolation theory, the critical porosity of zero-leakage at the wetting and non-wetting sealing interface working in liquid medium is first discussed. The influence of end-face frictional heat on end-face friction and wear is then investigated. The design criteria for the face contact pressure of mechanical seals with zero-leakage and long-life operation are established. Afterwards, the face contact pressure range of the mechanical seal working in conventional different liquid medium is calculated, and the influence of different working conditions speed, medium temperature and pressure on the face contact pressure range change is analyzed. Existing studies have shown that mechanical seals can achieve zero-leakage and long-life operation. As for the wettable sealing interface, the minimum face contact pressure, corresponding to the zero-leakage condition, is only related to the morphological parameters of the sealing interface, and has nothing to do with the sealing medium. Under the rotating and stationary rings physical parameters and given working conditions, the face contact pressure range of the sealing medium water and propane propylene is 0.477~1.132 MPa. The diesel sealing medium has a larger face contact pressure range than that of water and propane propylene, which can reach 0.477~2.183 MPa. The working condition speed, medium temperature and medium pressure have an influence on the face contact pressure range, while the influence of the working condition speed is the most significant.


Author(s):  
Yunlei Wang ◽  
Jiu Hui Wu ◽  
Lushuai Xu ◽  
Hongjun Liu

This paper presents a Rayleigh-steps mechanical seal with reverse steps (RS-MS), and the governing equation was solved by the finite difference method (FDM). The effects of angular misalignment, working condition parameters, and film thickness on sealing performance were discussed, including the opening force, cavitation ratio, leakage rate, frictional torque, stiffness and damping coefficients. The results indicate that the cavitation phenomenon in the reverse step groove can restrain the leakage, while it also affects the stability of the seal. The angular misalignment makes the seal have greater stiffness and damping coefficients. The stiffness and damping coefficients decrease rapidly with the increase of the film thickness, and the dynamic stability of the mechanical seal decreases with the increase of the film thickness, which is not conducive to the stable operation of the seal. The research results can guide the optimization design of mechanical seals.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012043
Author(s):  
LuLing Dai

Abstract The working condition parameters of common contact mechanical seals are experimentally studied by orthogonal experimental design. The effects of working condition parameters on mechanical seal performance are compared by variance and range analysis, and the optimal sealing working condition is put forward. The results show that the spring specific pressure has a great influence on the leakage of mechanical seal, and the leakage decreases rapidly with the increase of spring specific pressure; With the increase of spring specific pressure, the friction power consumption increases. According to the test results, considering the requirements of mechanical seal performance and service life, the optimal spring specific pressure is 0.028 MPa under the condition of medium pressure ps =0.60 MPa and motor speed n =2960 r/min. At this time, the leakage is 6.120 ml/h and the friction power consumption is 0.648 kW.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Ma ◽  
Ya-Hui Wang ◽  
Hai-Chun Zhou ◽  
Wen-Tao Su

Mechanical seals prevents flow leakages in reactor coolant pumps thus playing an important role in their operational safety. However, their operational performance depends on different parameters, the seal geometrical design and the sealing medium characteristics among others. This study investigates the main performances of the waviness end-face mechanical seal, considering the effect of fluid flow and thermal characteristics. The involved coupled thermal-hydraulic process is simulated using the OpenFOAM, based on the coupled Navier-Stokes and energy balance equations. Study results showed that the viscosity-temperature effect may increase the flow leakage, and decrease both the opening force and the liquid film stiffness. The later may be decreased to negative values under specific conditions. It’s therefore generally found that visco-thermal characteristics of the sealing medium may negatively affect mechanical seal’s operational stability. On the other hand, from the perspective of liquid film temperature rise, the visco-thermal effect may lead to the regulation of the temperature rise in the liquid film, which improves the mechanical seal’s operational safety in some aspects. Through a comprehensive analysis, the optimal structural parameters of the waviness mechanical seal investigated in this study are found to be hi = 2.5μm, β = 900μrad (Rd-Ri)/(Ro-Ri) = 0.2, α = 0.8, and k = 9.


Author(s):  
Dr. Maruti M. Khot

A mechanical device which raises the pressure of a gas by decreasing its volume is called as compressor. A coupling is a device which transmits the power from one end to another end. The purpose of coupling is to join two parts which allowing some degree of misalignment or end movement or both. But in conventional coupling, there are lots of losses like mechanical losses, noise and vibration losses etc. These losses have effects on the efficiency of the system. In mechanical seals, leakages are possible. So, leakage of hazardous chemicals polluting the environment has to prevent. The mechanical seal limits the speed of the compressor as the wear rates of the seal are proportional to speed. To improve the efficiency of coupling and to minimize the mechanical losses of coupling, magnetic coupling is introduced. It is contactless coupling which transfer the power from input shaft to output shaft. MATLAB software is used for analysis of magnetic coupling. This paper represents evaluation of force and torque transmitted by magnetic coupling. The theoretical analysis of magnetic coupling is carried out by using basic principle of electromagnetism. Magnetic coupling is designed to sustain the given load and torque. Permanent disc magnets of NdFeB material are selected for magnetic coupling for high strength of magnetic field. The brass plates are used to hold the magnets.


2021 ◽  
Vol 159 ◽  
pp. 106989
Author(s):  
Lushuai Xu ◽  
Jiu Hui Wu ◽  
Yunlei Wang ◽  
Qian Jia ◽  
Gang Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document