scholarly journals Optimal design and stress analysis of the transmission line inspection robot along the ground line

2019 ◽  
Vol 2019 (16) ◽  
pp. 3088-3091 ◽  
Author(s):  
Wang Haitao ◽  
Yan Biwu ◽  
Pu Ziheng ◽  
Xiong Yuyao ◽  
Fan Qiang ◽  
...  
2008 ◽  
Vol 75 (4) ◽  
Author(s):  
Chuanxiang Zheng ◽  
Shaohui Lei

Stress analysis of flat steel ribbon wound pressure vessels (FSRWPVs) is very difficult because they have a special discrete structure and complex pretensions exit in the flat steel ribbons, which are wound around the inner shell layer by layer. An analytical multilayered model for stress analysis is presented in this paper, which involves the effect of prestress in every flat steel ribbon layer as well as in the inner shell. Based on this model, an optimal design method for FSRWPV is suggested, which can assure a reasonable stress level and distribution along the wall thickness during the operation. A practical example of a large FSRWPV is finally given for illustration.


Author(s):  
Guanghong Tao ◽  
Lijin Fang

Purpose The purpose of this paper is to introduce a robot mechanism designed for power transmission line inspection. The focus for this design is on obstacle-crossing ability with a goal to create a robot moving and crossing obstacle on not only the straight line but also the steering line. Design/methodology/approach A novel four-unit tri-arm serial robot mechanism is proposed. Every novel unit designed for pitching motion is based on parallelogram structure, which is driven by cables and only one motor. There is gripper-wheel compounding mechanism mounted on the arm. The prototype and obstacle environments are established, and the obstacle-crossing experiments are conducted. Findings The novel unit mechanism and robot prototype have been tested in the lab. The prototype has demonstrated the obstacle-crossing ability when moving and crossing fundamental obstacles on the line. The experimental results show that the robot mechanism meets the obstacle-crossing requirements. Practical implications The novel robot technology can be used for defect inspection of power transmission line by power companies. Social implications It stands to lower the intense and risk of inspection works and reduce the costs related to inspection. Originality/value Innovative features include its architecture, mobility and driving method.


Sign in / Sign up

Export Citation Format

Share Document