Nickel–iron, cobalt–iron and aluminium–iron alloys

1968 ◽  
Vol 39 (2) ◽  
pp. 603-605 ◽  
Author(s):  
G. Rassmann ◽  
U. Hofmann

Talanta ◽  
1969 ◽  
Vol 16 (5) ◽  
pp. 627
Author(s):  
M Theodore
Keyword(s):  

2020 ◽  
Vol 90 (3) ◽  
pp. 434
Author(s):  
А.Н. Ищенко ◽  
С.А. Афанасьева ◽  
Н.Н. Белов ◽  
В.В. Буркин ◽  
С.В. Галсанов ◽  
...  

In this work, computational and experimental studies of the process of destruction of composite firing pin of porous alloy tungsten+nickel+iron+cobalt with 10 % content of titanium tungsten carbide at high-speed collision with steel barriers. It is shown that at ballistic tests with the broad range of speeds, significant exceeding of penetration of these firing pins in steel barriers in comparison with a mass-dimensional analog of the W-Ni-Fe-90 alloy. Based on the analysis of the crater morphology and structure of the striker fragments after penetration into the barrier, the assumption of implementation of the self-sharpenings mode of the firing pin, by means of localization of plastic deformation is made that leads to decrease in the effective area of interaction and increase in depth of penetration. Modification of a mathematical model of a porous ideal elasto-plastic solid with complex structure for the description of destruction with a possibility of accounting of the adiabatic shift mechanism in the course of interaction of the firing pin and a barrier is carried out.


Sign in / Sign up

Export Citation Format

Share Document