sintering conditions
Recently Published Documents


TOTAL DOCUMENTS

484
(FIVE YEARS 74)

H-INDEX

29
(FIVE YEARS 5)

Author(s):  
Bartosz Wicher ◽  
Rafał Chodun ◽  
Marek Trzcinski ◽  
Artur Lachowski ◽  
Katarzyna Nowakowska-Langier ◽  
...  

CrystEngComm ◽  
2022 ◽  
Author(s):  
Xun Shen ◽  
Shu-Hao Yang ◽  
Peng-gang Yin ◽  
Chao-Qin Li ◽  
Jinrui Ye ◽  
...  

The combination of traditional magnetic metal materials and dielectric carbon materials to improve microwave absorption properties has aroused great interest. In this article, the Ni@C submicrospheres have been successfully synthesized...


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7395
Author(s):  
Joseph Longji Dadiel ◽  
Sugali Pavan Kumar Naik ◽  
Paweł Pęczkowski ◽  
Jun Sugiyama ◽  
Hiraku Ogino ◽  
...  

In this study, high-density magnesium diboride (MgB2) bulk superconductors were synthesized by spark plasma sintering (SPS) under pressure to improve the field dependence of the critical current density (Jc-B) in MgB2 bulk superconductors. We investigated the relationship between sintering conditions (temperature and time) and Jc-B using two methods, ex situ (sintering MgB2 synthesized powder) and in situ (reaction sintering of Mg and B powder), respectively. As a result, we found that higher density with suppressed particle growth and suppression of the formation of coarse particles of MgB4 and MgO were found to be effective in improving the Jc-B characteristics. In the ex situ method, the degradation of MgB2 due to pyrolysis was more severe at temperatures higher than 850 °C. The sample that underwent SPS treatment for a short time at 850 °C showed higher density and less impurity phase in the bulk, which improved the Jc-B properties. In addition, the in situ method showed very minimal impurity with a corresponding improvement in density and Jc-B characteristics for the sample optimized at 750 °C. Microstructural characterization and flux pinning (fP) analysis revealed the possibility of refined MgO inclusions and MgB4 phase as new pinning centers, which greatly contributed to the Jc-B properties. The contributions of the sintering conditions on fP for both synthesis methods were analyzed.


2021 ◽  
Vol 9 (11) ◽  
pp. 80-84
Author(s):  
Samir Butkovic ◽  
◽  
Emir Saric ◽  

Very important property of powder metallurgy parts is ability to join to components produced by different manufacturing technologies or dissimilar materials. Properties of powder metallurgy Nb modified HK30 components are highly influenced by conditions applied during sintering. Weldability of sintered components can be improved using favorable sintering conditions. In this regard, effect of sintering parameters on fusion weldability of Nb modified HK30 is presented in this paper. Investigation of weld joints between HK30, produced by different sintering conditions, and cast HK30 stainless steel is performed. In addition, examination of welds between sintered HK30 and wrought 304 stainless steel is also performed. Microstructural examination and hardness testing of fusion zones and heat affected zones were done for different combinations of base material.


Author(s):  
Yoon Sung Jung ◽  
Kyung Won Min ◽  
Jae Ho Choi ◽  
Ji Sob Yoon ◽  
Won Bin Im ◽  
...  

2021 ◽  
Vol 2021 (11) ◽  
pp. 1433-1440
Author(s):  
T. F. Grigoreva ◽  
T. Yu. Kiseleva ◽  
S. A. Kovaleva ◽  
S. I. Zholudev ◽  
S. V. Vosmerikov ◽  
...  

2021 ◽  
Author(s):  
Pradeep Lall ◽  
Jinesh Narangaparambil ◽  
Tony Thomas ◽  
Kyle Schulze

Abstract Printed electronics has found new applications in wearable electronics owing to the opportunities for integration, and the ability of sustaining folding, flexing and twisting. Continuous monitoring necessitates the production of sensors, which include temperature, humidity, sweat, and strain sensors. In this paper, a process study was performed on the FR4 board while taking into account multiple printing parameters for the direct-write system. The process parameters include ink pressure, print speed, and stand-off height, as well as their effect on the trace profile and print consistency using white light interferometry analysis. The printed traces have also been studied for different sintering conditions while keeping the FR4 board’s temperature limit in mind. The paper also discusses the effect of sintering conditions on mechanical and electrical properties, specifically shear load to failure and resistivity. The data from this was then used to print strain gauges and compared them to commercially available strain gauges. By reporting the gauge factor, the printed strain gauge has been standardized. The conductive ink’s strain sensing capabilities will be studied under tensile cyclic loading (3-point bending) at various strain rates and maximum strains. Long-term performance testing will be carried out using cyclic tensile loads.


2021 ◽  
Author(s):  
Pradeep Lall ◽  
Jinesh Narangaparambil ◽  
Kyle Schulze ◽  
Scott Miller

Abstract Filters are used in a variety of signal processing applications in commercial and defense electronics. The use of additively printed electronics in high-frequency applications requires an understanding of the process-performance interactions versus frequency of operation. Assembly of filters for integration into existing circuits requires additively printed metallization traces in addition to component attachment methods. Comparison of frequency response of the additively-printed filtering circuits vs conventional filters subtractively-fabricated on rigid substrates is needed to determine the performance parity of additive fabrication methods. In this paper, a micro-dispensing device is used to print conductive traces and electrically conductive adhesive (ECA) pads for the attachment of components. The effect of different print parameters on the width and height of the trace has been studied. Mechanical and electrical properties also play an important role in the study of different sintering conditions. Optimized parameters from the printing process and sintering analysis are used to print and compare commercially available LC filter circuitry using the Bode plot.


Sign in / Sign up

Export Citation Format

Share Document