scholarly journals Ultra‐short‐term irradiance forecasting model based on ground‐based cloud image and deep learning algorithm

Author(s):  
Zhao Zhen ◽  
Xuemin Zhang ◽  
Shengwei Mei ◽  
Xiqiang Chang ◽  
Hua Chai ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yifan Jian ◽  
Xianguo Qing ◽  
Yang Zhao ◽  
Liang He ◽  
Xiao Qi

The coal mill is one of the important auxiliary engines in the coal-fired power station. Its operation status is directly related to the safe and steady operation of the units. In this paper, a model-based deep learning algorithm for fault diagnosis is proposed to effectively detect the operation state of coal mills. Based on the system mechanism model of coal mills, massive fault data are obtained by analyzing and simulating the different types of faults. Then, stacked autoencoders (SAEs) are established by combining the said data with the deep learning algorithm. The SAE model is trained by the fault data, which provide it with the learning and identification capability of the characteristics of faults. According to the simulation results, the accuracy of fault diagnosis of coal mills based on SAE is high at 98.97%. Finally, the proposed SAEs can well detect the fault in coal mills and generate the warnings in advance.


2019 ◽  
Vol 5 (12) ◽  
pp. 2210-2218
Author(s):  
Zifei Wang ◽  
Yi Man ◽  
Yusha Hu ◽  
Jigeng Li ◽  
Mengna Hong ◽  
...  

An influent COD prediction model based on the CNN-LSTM deep learning algorithm is proposed as the basis of aeration control in WWTPs.


2021 ◽  
Vol 54 (3-4) ◽  
pp. 439-445
Author(s):  
Chih-Ta Yen ◽  
Sheng-Nan Chang ◽  
Cheng-Hong Liao

This study used photoplethysmography signals to classify hypertensive into no hypertension, prehypertension, stage I hypertension, and stage II hypertension. There are four deep learning models are compared in the study. The difficulties in the study are how to find the optimal parameters such as kernel, kernel size, and layers in less photoplethysmographyt (PPG) training data condition. PPG signals were used to train deep residual network convolutional neural network (ResNetCNN) and bidirectional long short-term memory (BILSTM) to determine the optimal operating parameters when each dataset consisted of 2100 data points. During the experiment, the proportion of training and testing datasets was 8:2. The model demonstrated an optimal classification accuracy of 76% when the testing dataset was used.


Sign in / Sign up

Export Citation Format

Share Document