scholarly journals Application of Model-Based Deep Learning Algorithm in Fault Diagnosis of Coal Mills

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yifan Jian ◽  
Xianguo Qing ◽  
Yang Zhao ◽  
Liang He ◽  
Xiao Qi

The coal mill is one of the important auxiliary engines in the coal-fired power station. Its operation status is directly related to the safe and steady operation of the units. In this paper, a model-based deep learning algorithm for fault diagnosis is proposed to effectively detect the operation state of coal mills. Based on the system mechanism model of coal mills, massive fault data are obtained by analyzing and simulating the different types of faults. Then, stacked autoencoders (SAEs) are established by combining the said data with the deep learning algorithm. The SAE model is trained by the fault data, which provide it with the learning and identification capability of the characteristics of faults. According to the simulation results, the accuracy of fault diagnosis of coal mills based on SAE is high at 98.97%. Finally, the proposed SAEs can well detect the fault in coal mills and generate the warnings in advance.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaoting Yin ◽  
Xiaosha Tao

Online business has grown exponentially during the last decade, and the industries are focusing on online business more than before. However, just setting up an online store and starting selling might not work. Different machine learning and data mining techniques are needed to know the users’ preferences and know what would be best for business. According to the decision-making needs of online product sales, combined with the influencing factors of online product sales in various industries and the advantages of deep learning algorithm, this paper constructs a sales prediction model suitable for online products and focuses on evaluating the adaptability of the model in different types of online products. In the research process, the full connection model is compared with the training results of CNN, which proves the accuracy and generalization ability of CNN model. By selecting the non-deep learning model as the comparison baseline, the performance advantages of CNN model under different categories of products are proved. In addition, the experiment concludes that the unsupervised pretrained CNN model is more effective and adaptable in sales forecasting.


2019 ◽  
Vol 5 (12) ◽  
pp. 2210-2218
Author(s):  
Zifei Wang ◽  
Yi Man ◽  
Yusha Hu ◽  
Jigeng Li ◽  
Mengna Hong ◽  
...  

An influent COD prediction model based on the CNN-LSTM deep learning algorithm is proposed as the basis of aeration control in WWTPs.


2019 ◽  
Vol 11 (9) ◽  
pp. 168781401987562 ◽  
Author(s):  
Yifan Jian ◽  
Xianguo Qing ◽  
Liang He ◽  
Yang Zhao ◽  
Xiao Qi ◽  
...  

The effective fault diagnosis of the motor bearings not only can ensure the smooth and efficient operation of equipment but also can detect and eliminate the running fault in time to prevent major accidents. Based on deep learning algorithm, this article constructs a stacked auto-encoder network. The input data are compressed and reduced by introducing sparsity constraint, so that the network can accurately extract the fault characteristics of the input data, and the fault recognition ability of the network can be improved by introducing random noise. The simulation result shows that the stacked auto-encoder network can not only overcome the shortcomings of traditional fault diagnosis method that requires to distinguish fault samples manually and needs a large number of prior knowledge but also realize the self-learning of fault signal feature. The accuracy rate of fault identification reaches 98%, 94%, 96%, and 95.5% in four different working conditions. What’s more, the network can exhibit strong robustness under different working conditions. Finally, the new research ideas of fault diagnosis in thermal power plant are put forward by copying the idea of fault diagnosis of motor bearing.


2020 ◽  
Vol 12 (19) ◽  
pp. 3111
Author(s):  
Ming Xie ◽  
Ying Li ◽  
Kai Cao

Cyclone detection is a classical topic and researchers have developed various methods of cyclone detection based on sea-level pressure, cloud image, wind field, etc. In this article, a deep-learning algorithm is incorporated with modern remote-sensing technology and forms a global-scale cyclone/anticyclone detection model. Instead of using optical images, wind field data obtained from Mean Wind Field-Advanced Scatterometer (MWF-ASCAT) is utilized as the dataset for model training and testing. The wind field vectors are reconstructed and fed to the deep-learning model, which is built based on a faster-region with convolutional neural network (faster-RCNN). The model consists of three modules: a series of convolutional and pooling layers as the feature extractor, a region proposal network that searches for the potential areas of cyclone/anticyclone within the dataset, and the classifier that classifies the proposed region as cyclone or anticyclone through a fully-connected neural network. Compared with existing methods of cyclone detection, the test results indicate that this model based on deep learning is able to reduce the number of false alarms, and at the same time, maintain high accuracy in cyclone detection. An application of this method is presented in the article. By processing temporally continuous data of wind field, the model is able to track the path of Hurricane Irma in September, 2017. The advantages and limitations of the model are also discussed in the article.


Sign in / Sign up

Export Citation Format

Share Document