scholarly journals Test-field method for mean-field coefficients with MHD background

2010 ◽  
Vol 520 ◽  
pp. A28 ◽  
Author(s):  
M. Rheinhardt ◽  
A. Brandenburg
Keyword(s):  
2020 ◽  
Vol 500 (3) ◽  
pp. 3527-3535
Author(s):  
Abhijit B Bendre ◽  
Detlef Elstner ◽  
Oliver Gressel

ABSTRACT Large-scale coherent magnetic fields observed in the nearby galaxies are thought to originate by a mean-field dynamo. This is governed via the turbulent electromotive force (EMF, $\overline{{\boldsymbol {\cal E}} {}}$) generated by the helical turbulence driven by supernova (SN) explosions in the differentially rotating interstellar medium (ISM). In this paper, we aim to investigate the possibility of dynamo action by the virtue of buoyancy due to a cosmic ray (CR) component injected through the SN explosions. We do this by analysing the magnetohydrodynamic simulations of local shearing box of ISM in which the turbulence is driven via random SN explosions and the energy of the explosion is distributed in the CR and/or thermal energy components. We use the magnetic field aligned diffusion prescription for the propagation of CR. We compare the evolution of magnetic fields in the models with the CR component to our previous models that did not involve the CR. We demonstrate that the inclusion of CR component enhances the growth of dynamo slightly. We further compute the underlying dynamo coefficients using the test-field method and argue that the entire evolution of the large-scale mean magnetic field can be reproduced with an α − Ω dynamo model. We also show that the inclusion of CR component leads to an unbalanced turbulent pumping between magnetic field components and additional dynamo action by the Rädler effect.


2018 ◽  
Vol 84 (4) ◽  
Author(s):  
Axel Brandenburg

Recent advances in mean-field theory are reviewed and applications to the Sun, late-type stars, accretion disks, galaxies and the early Universe are discussed. We focus particularly on aspects of spatio-temporal non-locality, which provided some of the main new qualitative and quantitative insights that emerged from applying the test-field method to magnetic fields of different length and time scales. We also review the status of nonlinear quenching and the relation to magnetic helicity, which is an important observational diagnostic of modern solar dynamo theory. Both solar and some stellar dynamos seem to operate in an intermediate regime that has not yet been possible to model successfully. This regime is bracketed by antisolar-like differential rotation on one end and stellar activity cycles belonging to the superactive stars on the other. The difficulty in modelling this regime may be related to shortcomings in simulating solar/stellar convection. On galactic and extragalactic length scales, the observational constraints on dynamo theory are still less stringent and more uncertain, but recent advances both in theory and observations suggest that more conclusive comparisons may soon be possible also here. The possibility of inversely cascading magnetic helicity in the early Universe is particularly exciting in explaining the recently observed lower limits of magnetic fields on cosmological length scales. Such magnetic fields may be helical with the same sign of magnetic helicity throughout the entire Universe. This would be a manifestation of parity breaking.


2009 ◽  
Vol 5 (H15) ◽  
pp. 432-433 ◽  
Author(s):  
Axel Brandenburg ◽  
Fabio Del Sordo

AbstractUsing the test-field method for nearly irrotational turbulence driven by spherical expansion waves it is shown that the turbulent magnetic diffusivity increases with magnetic Reynolds numbers. Its value levels off at several times the rms velocity of the turbulence multiplied by the typical radius of the expansion waves. This result is discussed in the context of the galactic mean-field dynamo.


2010 ◽  
Vol 6 (S274) ◽  
pp. 348-354
Author(s):  
Oliver Gressel ◽  
Detlef Elstner ◽  
Günther Rüdiger

AbstractThe fractal shape and multi-component nature of the interstellar medium together with its vast range of dynamical scales provides one of the great challenges in theoretical and numerical astrophysics. Here we will review recent progress in the direct modelling of interstellar hydromagnetic turbulence, focusing on the role of energy injection by supernova explosions. The implications for dynamo theory will be discussed in the context of the mean-field approach.Results obtained with the test field-method are confronted with analytical predictions and estimates from quasilinear theory. The simulation results enforce the classical understanding of a turbulent Galactic dynamo and, more importantly, yield new quantitative insights. The derived scaling relations enable confident global mean-field modelling.


2020 ◽  
Vol 494 (1) ◽  
pp. 1180-1188
Author(s):  
Oliver Gressel ◽  
Detlef Elstner

ABSTRACT The interstellar medium (ISM) of the Milky Way and nearby disc galaxies harbour large-scale coherent magnetic fields of microgauss strength, that can be explained via the action of a mean-field dynamo. As in our previous work, we aim to quantify dynamo effects that are self-consistently emerging in realistic direct magnetohydrodynamic simulations, but we generalize our approach to the case of a non-local (non-instantaneous) closure relation, described by a convolution integral in space (time). To this end, we leverage our comprehensive simulation framework for the supernova-regulated turbulent multiphase ISM. By introducing spatially (temporally) modulated mean fields, we extend the previously used test-field method to the spectral realm – providing the Fourier representation of the convolution kernels. The resulting spectra of the dynamo mean-field coefficients that we obtain broadly match expectations and allow to rigorously constrain the degree of scale separation in the Galactic dynamo. A surprising result is found for the diamagnetic pumping term, which increases in amplitude when going to smaller scales. Our results amount to the most comprehensive description of dynamo mean-field effects in the Galactic context to date. Surveying the relevant parameter space and quenching behaviour, this will ultimately enable the development of assumption-free subgrid prescriptions for otherwise unresolved global galaxy simulations.


2008 ◽  
Vol 385-387 ◽  
pp. 221-224
Author(s):  
Wen Ping Wu ◽  
Ya Fang Guo ◽  
Yue Sheng Wang

A quantitative life prediction method has been proposed to evaluate fatigue life during morphological evolution of precipitates in Ni-based superalloys. The method is essentially based on Eshelby’s equivalent inclusion theory and Mori-Tanaka’s mean field method. The shape stability and life prediction are discussed when the external stress and matrix plastic strain are applied. The calculated results show that the fatigue life is closely related with microstructures evolution of precipitates. The magnitude and sign of the external stress and matrix plastic strain have an important effect on fatigue life of Ni-based superalloys during the morphological evolution of precipitates.


2007 ◽  
Vol 39 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Masakazu Tane ◽  
Tetsu Ichitsubo ◽  
Masahiko Hirao ◽  
Hideo Nakajima

1986 ◽  
pp. 173-177
Author(s):  
I. M. Popescu ◽  
E. N. Stefanescu ◽  
P. E. Sterian

Sign in / Sign up

Export Citation Format

Share Document