scholarly journals Automatic spectral classification of stellar spectra with low signal-to-noise ratio using artificial neural networks

2012 ◽  
Vol 538 ◽  
pp. A76 ◽  
Author(s):  
S. G. Navarro ◽  
R. L. M. Corradi ◽  
A. Mampaso
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Edgar Vilavicencio-Arcadia ◽  
Silvana G. Navarro ◽  
Luis J. Corral ◽  
Cynthia A. Martínez ◽  
Alberto Nigoche ◽  
...  

Classification in astrophysics is a fundamental process, especially when it is necessary to understand several aspects of the evolution and distribution of the objects. Over an astronomical image, we need to discern between stars and galaxies and to determine the morphological type for each galaxy. The spectral classification of stars provides important information about stellar physical parameters like temperature and allows us to determine their distance; with this information, it is possible to evaluate other parameters like their physical size and the real 3D distribution of each type of objects. In this work, we present the application of two Artificial Intelligence (AI) techniques for the automatic spectral classification of stellar spectra obtained from the first data release of LAMOST and also to the more recent release (DR5). Two types of Artificial Neural Networks were selected: a feedforward neural network trained according to the Levenberg–Marquardt Optimization Algorithm (LMA) and a Generalized Regression Neural Network (GRNN). During the study, we used four datasets: the first was obtained from the LAMOST first data release and consisted of 50731 spectra with signal-to-noise ratio above 20, the second dataset was obtained from the Indo-US spectral database (1273 spectra), the third one (the STELIB spectral database) was used as an independent test dataset, and the fourth dataset was obtained from LAMOST DR5 and consisted of 17990 stellar spectra with signal-to-noise ratio above 20 also. The results in the first part of the work, when the autoconsistency of the DR1 data was probed, showed some problems in the spectral classification available in LAMOST DR1. In order to accomplish a better classification, we made a two-step process: first the LAMOST and STELIB datasets were classified by the two IA techniques trained with the entire Indo-US dataset. The resulted classification allows us to discriminate at least three groups: the first group contained O and B type stars, whereas the second contained A, F, and G type stars, and finally, the third group contained K and M type stars. The second step consisted of a refinement of the classification, but this time for every group, the most relevant indices were selected. We compared the accuracy reached by the two techniques when they are trained and tested using LAMOST spectra and their published classification and the resultant classifications obtained with the ANNs trained with the Indo-US dataset and applied over the STELIB and LAMOST spectra. Finally, in the first part, we compared the LAMOST DR1 classification with the classification obtained by the application of the NNs GRNNs and LMA trained with the Indo-US dataset. In the second part of the paper, we analyze a set of 17990 stellar spectra from LAMOST DR5 and the very significant improvement in the spectral classification available in DR5 database was verified. For this, we trained ANNs using the k-fold cross-validation technique with k = 5.


Author(s):  
Bruce Vanstone ◽  
Gavin Finnie

Soft computing represents that area of computing adapted from the physical sciences. Artificial intelligence techniques within this realm attempt to solve problems by applying physical laws and processes. This style of computing is particularly tolerant of imprecision and uncertainty, making the approach attractive to those researching within “noisy” realms, where the signal-to-noise ratio is quite low. Soft computing is normally accepted to include the three key areas of fuzzy logic, artificial neural networks, and probabilistic reasoning (which include genetic algorithms, chaos theory, etc.). The arena of investment trading is one such field where there is an abundance of noisy data. It is in this area that traditional computing typically gives way to soft computing as the rigid conditions applied by traditional computing cannot be met. This is particularly evident where the same sets of input conditions may appear to invoke different outcomes, or there is an abundance of missing or poor quality data. Artificial neural networks (henceforth ANNs) are a particularly promising branch on the tree of soft computing, as they possess the ability to determine non-linear relationships, and are particularly adept at dealing with noisy datasets. From an investment point of view, ANNs are particularly attractive as they offer the possibility of achieving higher investment returns for two distinct reasons. Firstly, with the advent of cheaper computing power, many mathematical techniques have come to be in common use, effectively minimizing any advantage they had introduced (see Samuel & Malakkal, 1990). Secondly, in order to attempt to address the first issue, many techniques have become more complex. There is a real risk that the signal-to-noise ratio associated with such techniques may be becoming lower, particularly in the area of pattern recognition, as discussed by Blakey (2002). Investment and financial trading is normally divided into two major disciplines: fundamental analysis and technical analysis. Articles concerned with applying ANNs to these two disciplines are reviewed.


2021 ◽  
Author(s):  
S.V. Zimina

Setting up artificial neural networks using iterative algorithms is accompanied by fluctuations in weight coefficients. When an artificial neural network solves the problem of allocating a useful signal against the background of interference, fluctuations in the weight vector lead to a deterioration of the useful signal allocated by the network and, in particular, losses in the output signal-to-noise ratio. The goal of the research is to perform a statistical analysis of an artificial neural network, that includes analysis of losses in the output signal-to-noise ratio associated with fluctuations in the weight coefficients of an artificial neural network. We considered artificial neural networks that are configured using discrete gradient, fast recurrent algorithms with restrictions, and the Hebb algorithm. It is shown that fluctuations lead to losses in the output signal/noise ratio, the level of which depends on the type of algorithm under consideration and the speed of setting up an artificial neural network. Taking into account the fluctuations of the weight vector in the analysis of the output signal-to-noise ratio allows us to correlate the permissible level of loss in the output signal-to-noise ratio and the speed of network configuration corresponding to this level when working with an artificial neural network.


1996 ◽  
Vol 13 (3) ◽  
pp. 207-211 ◽  
Author(s):  
Daya M. Rawson ◽  
Jeremy Bailey ◽  
Paul J. Francis

AbstractThe use of artificial neural networks (ANNs) as a classifier of digital spectra is investigated. Using both simulated and real data, it is shown that neural networks can be trained to discriminate between the spectra of different classes of active galactic nucleus (AGN) with realistic sample sizes and signal-to-noise ratios. By working in the Fourier domain, neural nets can classify objects without knowledge of their redshifts.


2001 ◽  
Vol 562 (1) ◽  
pp. 528-548 ◽  
Author(s):  
Shawn Snider ◽  
Carlos Allende Prieto ◽  
Ted von Hippel ◽  
Timothy C. Beers ◽  
Christopher Sneden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document