Analysis of neural networks efficiency when accounting for weight coefficients jitter, leading to reduction in output signal/noise ratio

2021 ◽  
Author(s):  
S.V. Zimina

Setting up artificial neural networks using iterative algorithms is accompanied by fluctuations in weight coefficients. When an artificial neural network solves the problem of allocating a useful signal against the background of interference, fluctuations in the weight vector lead to a deterioration of the useful signal allocated by the network and, in particular, losses in the output signal-to-noise ratio. The goal of the research is to perform a statistical analysis of an artificial neural network, that includes analysis of losses in the output signal-to-noise ratio associated with fluctuations in the weight coefficients of an artificial neural network. We considered artificial neural networks that are configured using discrete gradient, fast recurrent algorithms with restrictions, and the Hebb algorithm. It is shown that fluctuations lead to losses in the output signal/noise ratio, the level of which depends on the type of algorithm under consideration and the speed of setting up an artificial neural network. Taking into account the fluctuations of the weight vector in the analysis of the output signal-to-noise ratio allows us to correlate the permissible level of loss in the output signal-to-noise ratio and the speed of network configuration corresponding to this level when working with an artificial neural network.

2014 ◽  
pp. 35-39
Author(s):  
Viktor Lokazyuk ◽  
Viktor Cheshun ◽  
Vitaliy Chornenkiy

The base principles of a technique of application of 3-layer feedforward fullconnected artificial neural network for execution of adaptive algorithms of testing of digital microprocessor devices are considered. The method of change of weight coefficients and thresholds of artificial neurons in the mode of operation of artificial neural network realized at the hardware level is considered. The application of this method provides implementation of adaptive algorithms of testing of the large complexity with the limited hardware resources of artificial neural network.


Author(s):  
Bruce Vanstone ◽  
Gavin Finnie

Soft computing represents that area of computing adapted from the physical sciences. Artificial intelligence techniques within this realm attempt to solve problems by applying physical laws and processes. This style of computing is particularly tolerant of imprecision and uncertainty, making the approach attractive to those researching within “noisy” realms, where the signal-to-noise ratio is quite low. Soft computing is normally accepted to include the three key areas of fuzzy logic, artificial neural networks, and probabilistic reasoning (which include genetic algorithms, chaos theory, etc.). The arena of investment trading is one such field where there is an abundance of noisy data. It is in this area that traditional computing typically gives way to soft computing as the rigid conditions applied by traditional computing cannot be met. This is particularly evident where the same sets of input conditions may appear to invoke different outcomes, or there is an abundance of missing or poor quality data. Artificial neural networks (henceforth ANNs) are a particularly promising branch on the tree of soft computing, as they possess the ability to determine non-linear relationships, and are particularly adept at dealing with noisy datasets. From an investment point of view, ANNs are particularly attractive as they offer the possibility of achieving higher investment returns for two distinct reasons. Firstly, with the advent of cheaper computing power, many mathematical techniques have come to be in common use, effectively minimizing any advantage they had introduced (see Samuel & Malakkal, 1990). Secondly, in order to attempt to address the first issue, many techniques have become more complex. There is a real risk that the signal-to-noise ratio associated with such techniques may be becoming lower, particularly in the area of pattern recognition, as discussed by Blakey (2002). Investment and financial trading is normally divided into two major disciplines: fundamental analysis and technical analysis. Articles concerned with applying ANNs to these two disciplines are reviewed.


Author(s):  
Navaamsini Boopalan ◽  
Agileswari K. Ramasamy ◽  
Farrukh Hafiz Nagi

Array sensors are widely used in various fields such as radar, wireless communications, autonomous vehicle applications, medical imaging, and astronomical observations fault diagnosis. Array signal processing is accomplished with a beam pattern which is produced by the signal's amplitude and phase at each element of array. The beam pattern can get rigorously distorted in case of failure of array element and effect its Signal to Noise Ratio (SNR) badly. This paper proposes on a Hybrid Neural Network layer weight Goal Attain Optimization (HNNGAO) method to generate a recovery beam pattern which closely resembles the original beam pattern with remaining elements in the array. The proposed HNNGAO method is compared with classic synthesize beam pattern goal attain method and failed beam pattern generated in MATLAB environment. The results obtained proves that the proposed HNNGAO method gives better SNR ratio with remaining working element in linear array compared to classic goal attain method alone. Keywords: Backpropagation; Feed-forward neural network; Goal attain; Neural networks; Radiation pattern; Sensor arrays; Sensor failure; Signal-to-Noise Ratio (SNR)


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 47
Author(s):  
Vasyl Teslyuk ◽  
Artem Kazarian ◽  
Natalia Kryvinska ◽  
Ivan Tsmots

In the process of the “smart” house systems work, there is a need to process fuzzy input data. The models based on the artificial neural networks are used to process fuzzy input data from the sensors. However, each artificial neural network has a certain advantage and, with a different accuracy, allows one to process different types of data and generate control signals. To solve this problem, a method of choosing the optimal type of artificial neural network has been proposed. It is based on solving an optimization problem, where the optimization criterion is an error of a certain type of artificial neural network determined to control the corresponding subsystem of a “smart” house. In the process of learning different types of artificial neural networks, the same historical input data are used. The research presents the dependencies between the types of neural networks, the number of inner layers of the artificial neural network, the number of neurons on each inner layer, the error of the settings parameters calculation of the relative expected results.


2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


Sign in / Sign up

Export Citation Format

Share Document