scholarly journals Kinetic theory of spatially inhomogeneous stellar systems without collective effects

2013 ◽  
Vol 556 ◽  
pp. A93 ◽  
Author(s):  
P.-H. Chavanis
Author(s):  
Chris Hamilton

Abstract The unshielded nature of gravity means that stellar systems are inherently inhomogeneous. As a result, stars do not move in straight lines. This obvious fact severely complicates the kinetic theory of stellar systems because position and velocity turn out to be poor coordinates with which to describe stellar orbits – instead, one must use angle-action variables. Moreover, the slow relaxation of star clusters and galaxies can be enhanced or suppressed by collective interactions (‘polarisation’ effects) involving many stars simultaneously. These collective effects are also present in plasmas; in that case they are accounted for by the Balescu-Lenard (BL) equation, which is a kinetic equation in velocity space. Recently, several authors have shown how to account for both inhomogeneity and collective effects in the kinetic theory of stellar systems by deriving an angle-action generalisation of the BL equation. Unfortunately their derivations are long and complicated, involving multiple coordinate transforms, contour integrals in the complex plane, and so on. On the other hand, Rostoker’s superposition principle allows one to pretend that a long-range interacting N-body system, such as a plasma or star cluster, consists merely of uncorrelated particles that are ‘dressed’ by polarisation clouds. In this paper we use Rostoker’s principle to provide a simple, intuitive derivation of the BL equation for stellar systems which is much shorter than others in the literature. It also allows us to straightforwardly connect the BL picture of self-gravitating kinetics to the classical ‘two-body relaxation’ theory of uncorrelated flybys pioneered by Chandrasekhar.


1966 ◽  
Vol 24 ◽  
pp. 348-349
Author(s):  
Th. Schmidt-Kaler

This is only an informal remark about some difficulties I am worrying about.I have tried to recalibrate the MK system in terms of intrinsic colour (B–V)0and absolute magnitudeMv. The procedures used have been described in a review article by Voigt (Mitt. Astr. Ges.1963, p. 25–35), and the results for stars of the luminosity classes Ia-O,I and II have been given also in Blaauw's article on the calibration of luminosity criteria in vol. III (Basic Astronomical Data, p. 401) ofStars and Stellar Systems.


1979 ◽  
Vol 46 ◽  
pp. 125-149 ◽  
Author(s):  
David A. Allen

No paper of this nature should begin without a definition of symbiotic stars. It was Paul Merrill who, borrowing on his botanical background, coined the termsymbioticto describe apparently single stellar systems which combine the TiO absorption of M giants (temperature regime ≲ 3500 K) with He II emission (temperature regime ≳ 100,000 K). He and Milton Humason had in 1932 first drawn attention to three such stars: AX Per, CI Cyg and RW Hya. At the conclusion of the Mount Wilson Ha emission survey nearly a dozen had been identified, and Z And had become their type star. The numbers slowly grew, as much because the definition widened to include lower-excitation specimens as because new examples of the original type were found. In 1970 Wackerling listed 30; this was the last compendium of symbiotic stars published.


Author(s):  
Gregory V. Vereshchagin ◽  
Alexey G. Aksenov

Sign in / Sign up

Export Citation Format

Share Document