scholarly journals The white dwarf’s carbon fraction as a secondary parameter of Type Ia supernovae

2014 ◽  
Vol 572 ◽  
pp. A57 ◽  
Author(s):  
Sebastian T. Ohlmann ◽  
Markus Kromer ◽  
Michael Fink ◽  
Rüdiger Pakmor ◽  
Ivo R. Seitenzahl ◽  
...  
2005 ◽  
Vol 192 ◽  
pp. 525-533
Author(s):  
Weidong Li ◽  
Alexei V. Filippenko

SummaryObservations of Type Ia supernovae (SNe Ia) reveal correlations between their luminosities and light-curve shapes, and between their spectral sequence and photometric sequence. Assuming SNe Ia do not evolve at different redshifts, the Hubble diagram of SNe Ia may indicate an accelerating Universe, the signature of a cosmological constant or other forms of dark energy. Several studies raise concerns about the evolution of SNe Ia (e.g., the peculiarity rate, the rise time, and the color of SNe Ia at different redshifts), but all these studies suffer from the difficulties of obtaining high-quality spectroscopy and photometry for SNe Ia at high redshifts. There are also some troubling cases of SNe Ia that provide counter examples to the observed correlations, suggesting that a secondary parameter is necessary to describe the whole SN Ia family. Understanding SNe Ia both observationally and theoretically will be the key to boosting confidence in the SN Ia cosmological results.


1998 ◽  
Vol 492 (1) ◽  
pp. 228-245 ◽  
Author(s):  
P. Hoflich ◽  
J. C. Wheeler ◽  
A. Khokhlov

1994 ◽  
Vol 147 ◽  
pp. 186-213
Author(s):  
J. Isern ◽  
R. Canal

AbstractIn this paper we review the behavior of growing stellar degenerate cores. It is shown that ONeMg white dwarfs and cold CO white dwarfs can collapse to form a neutron star. This collapse is completely silent since the total amount of radioactive elements that are expelled is very small and a burst of γ-rays is never produced. In the case of an explosion (always carbonoxygen cores), the outcome fits quite well the observed properties of Type Ia supernovae. Nevertheless, the light curves and the velocities measured at maximum are very homogeneous and the diversity introduced by igniting at different densities is not enough to account for the most extreme cases observed. It is also shown that a promising way out of this problem could be the He-induced detonation of white dwarfs with different masses. Finally, we outline that the location of the border line which separetes explosion from collapse strongly depends on the input physics adopted.


2005 ◽  
Vol 620 (2) ◽  
pp. L87-L90 ◽  
Author(s):  
Xiaofeng Wang ◽  
Lifan Wang ◽  
Xu Zhou ◽  
Yu-Qing Lou ◽  
Zongwei Li

2013 ◽  
Vol 430 (1) ◽  
pp. 509-532 ◽  
Author(s):  
E. E. O. Ishida ◽  
R. S. de Souza

2006 ◽  
Vol 370 (2) ◽  
pp. 933-940 ◽  
Author(s):  
J. B. James ◽  
T. M. Davis ◽  
B. P. Schmidt ◽  
A. G. Kim

Sign in / Sign up

Export Citation Format

Share Document