scholarly journals Deuterium fractionation of a distant cold dark cloud along the line of sight of W51

2016 ◽  
Vol 597 ◽  
pp. A45 ◽  
Author(s):  
C. Vastel ◽  
B. Mookerjea ◽  
J. Pety ◽  
M. Gerin
Keyword(s):  
2020 ◽  
Vol 637 ◽  
pp. A7
Author(s):  
S. Muller ◽  
E. Roueff ◽  
J. H. Black ◽  
M. Gérin ◽  
M. Guélin ◽  
...  

Deuterium and lithium are light elements of high cosmological and astrophysical importance. In this work we report the first detection of deuterated molecules and a search for lithium hydride, 7LiH, at redshift z = 0.89 in the spiral galaxy intercepting the line of sight to the quasar PKS 1830−211. We used ALMA to observe several submillimeter lines of ND, NH2D, and HDO, and their related isotopomers NH2, NH3, and H218O, in absorption against the southwest image of the quasar, allowing us to derive XD/XH abundance ratios. The absorption spectra mainly consist of two distinct narrow velocity components for which we find remarkable differences. One velocity component shows XD/XH abundances that is about 10 times larger than the primordial elemental D/H ratio, and no variability of the absorption profile during the time span of our observations. In contrast, the other component shows a stronger deuterium fractionation. Compared to the first component, this second component has XD/XH abundances that are 100 times larger than the primordial D/H ratio, a deepening of the absorption by a factor of two within a few months, and a rich chemical composition, with relative enhancements of N2H+, CH3OH, SO2 and complex organic molecules. We therefore speculate that this component is associated with the analog of a Galactic dark cloud, while the first component is likely more diffuse. Our search for the 7LiH (1–0) line was unsuccessful and we derive an upper limit 7LiH/H2 = 4 × 10−13 (3σ) in the z = 0.89 absorber toward PKS 1830−211. Besides, with ALMA archival data, we could not confirm the previous tentative detections of this line in the z = 0.68 absorber toward B 0218+357; we derive an upper limit 7LiH/H2 = 5 × 10−11 (3σ), although this is less constraining than our limit toward PKS 1830−211. We conclude that, as in the Milky Way, only a tiny fraction of lithium nuclei are possibly bound in LiH in these absorbers at intermediate redshift.


1991 ◽  
Vol 147 ◽  
pp. 417-423
Author(s):  
Alyssa A. Goodman ◽  
Philip C. Myers ◽  
Pierre Bastien

We discuss the use of polarization maps of background starlight in studying the structure of the interstellar magnetic field. We make the assumption that the polarization observed is due to magnetically aligned dust grains associated with interstellar clouds along the line of sight, and that the position angle (ΘE) of polarization observed gives the direction (modulo 180°) of , the plane-of-the-sky projection of the (line-of-sight-averaged) magnetic field.There are two basic points in this paper. (1.) Out of context, the projected orientation of an elongated dark cloud may appear special (e.g. roughly "parallel" or “perpendicular”) in relation to the local (plane-of-the-sky) field direction given by polarization observations, but, when the view is expanded to include an entire complex of dark clouds, the shape and orientation of clouds within a complex often appears unrelated to the field structure. (2.) the dispersion in the postion angle of polarization observed in a region of the sky contains information about the ratio of the strength of the uniform (straight) component of the local magnetic field as compared to the dispersion (nonuniform component) in the field. Furthermore, in a region where Zeeman measurements covering the same region as polarization observations have been made, the uniform-to-nonuniform ratio deduced for the field from polarization data, can be combined with information about the line-of-sight field and an estimate of the correlation length of the field, to describe the magnetic field in three dimensions. We discuss the results of such an analysis for the dark cloud Lynds 204 (L204).


1991 ◽  
Vol 147 ◽  
pp. 417-423
Author(s):  
Alyssa A. Goodman ◽  
Philip C. Myers ◽  
Pierre Bastien

We discuss the use of polarization maps of background starlight in studying the structure of the interstellar magnetic field. We make the assumption that the polarization observed is due to magnetically aligned dust grains associated with interstellar clouds along the line of sight, and that the position angle (ΘE) of polarization observed gives the direction (modulo 180°) of , the plane-of-the-sky projection of the (line-of-sight-averaged) magnetic field.There are two basic points in this paper. (1.) Out of context, the projected orientation of an elongated dark cloud may appear special (e.g. roughly "parallel" or “perpendicular”) in relation to the local (plane-of-the-sky) field direction given by polarization observations, but, when the view is expanded to include an entire complex of dark clouds, the shape and orientation of clouds within a complex often appears unrelated to the field structure. (2.) the dispersion in the postion angle of polarization observed in a region of the sky contains information about the ratio of the strength of the uniform (straight) component of the local magnetic field as compared to the dispersion (nonuniform component) in the field. Furthermore, in a region where Zeeman measurements covering the same region as polarization observations have been made, the uniform-to-nonuniform ratio deduced for the field from polarization data, can be combined with information about the line-of-sight field and an estimate of the correlation length of the field, to describe the magnetic field in three dimensions. We discuss the results of such an analysis for the dark cloud Lynds 204 (L204).


1967 ◽  
Vol 31 ◽  
pp. 171-172
Author(s):  
Th. Schmidt-Kaler

The integralNHof neutral-hydrogen density along the line of sight is determined from the Kootwijk and Sydney surveys. The run ofNHwith galactic longitude agrees well with that of thermal continuous radiation and that of the optical surface brightness of the Milky Way.


1994 ◽  
Vol 144 ◽  
pp. 421-426
Author(s):  
N. F. Tyagun

AbstractThe interrelationship of half-widths and intensities for the red, green and yellow lines is considered. This is a direct relationship for the green and yellow line and an inverse one for the red line. The difference in the relationships of half-widths and intensities for different lines appears to be due to substantially dissimilar structuring and to a set of line-of-sight motions in ”hot“ and ”cold“ corona regions.When diagnosing the coronal plasma, one cannot neglect the filling factor - each line has such a factor of its own.


1968 ◽  
Author(s):  
ANDREW J. ECKLES ◽  
THOMAS A. GARRY ◽  
WILLIAM C. MULLEN

2016 ◽  
Vol E99.B (6) ◽  
pp. 1362-1370 ◽  
Author(s):  
Maki ARAI ◽  
Tomohiro SEKI ◽  
Ken HIRAGA ◽  
Kazumitsu SAKAMOTO ◽  
Tadao NAKAGAWA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document