scholarly journals Characterization of a subsample of the Planck SZ source cluster catalogues using optical SDSS DR12 data

2018 ◽  
Vol 617 ◽  
pp. A71 ◽  
Author(s):  
A. Streblyanska ◽  
R. Barrena ◽  
J. A. Rubiño-Martín ◽  
R. F. J. van der Burg ◽  
N. Aghanim ◽  
...  

Aims. The Planck catalogues of Sunyaev –Zeldovich (SZ) sources, PSZ1 and PSZ2, are the largest catalogues of galaxy clusters selected through their SZ signature in the full sky. In 2013, we started a long-term observational programme at Canary Island observatories with the aim of validating ∼500 unconfirmed SZ sources. In this work we present results of the initial pre-screening of possible cluster counterparts using photometric and spectroscopic data of the Sloan Digital Sky Survey DR12. Our main aim is to identify previously unconfirmed PSZ2 cluster candidates and to contribute in the determination of the actual purity and completeness of Planck SZ source sample. Methods. Using the latest version of the PSZ2 catalogue, we selected all sources overlapping with the SDSS DR12 footprint and without redshift information. We validated these cluster fields following optical criteria (mainly distance with respect to the Planck pointing, magnitude of the brightest cluster galaxy, and cluster richness), and combined these criteria with the profiles of the Planck Compton y-maps. This combined procedure allows for a more robust identification of optical counterparts compared to simply cross-matching with existing SDSS cluster catalogues that have been constructed from earlier SDSS data releases. Results. The sample contains new redshifts for 37 Planck galaxy clusters that were not included in the original release of PSZ2 Planck catalogue. We detect three cases as possible multiple counterparts. We show that a combination of all available information (optical images and profile of SZ signal) can provide correct associations between the observed Planck SZ source and the optically identified cluster. We also show that Planck SZ detection is very sensitive even to high-z (z > 0.5) clusters. In addition, we also present updated spectroscopic information for 34 Planck PSZ1 sources (33 previously photometrically confirmed and 1 new identification).

2012 ◽  
Vol 426 (4) ◽  
pp. 2944-2956 ◽  
Author(s):  
Adi Zitrin ◽  
Matthias Bartelmann ◽  
Keiichi Umetsu ◽  
Masamune Oguri ◽  
Tom Broadhurst

2021 ◽  
Vol 503 (3) ◽  
pp. 4309-4319
Author(s):  
Jong Chul Lee ◽  
Ho Seong Hwang ◽  
Hyunmi Song

ABSTRACT To study environmental effects on the circumgalactic medium (CGM), we use the samples of redMaPPer galaxy clusters, background quasars, and cluster galaxies from the Sloan Digital Sky Survey (SDSS). With ∼82 000 quasar spectra, we detect 197 Mg ii absorbers in and around the clusters. The detection rate per quasar is 2.7 ± 0.7 times higher inside the clusters than outside the clusters, indicating that Mg ii absorbers are relatively abundant in clusters. However, when considering the galaxy number density, the absorber-to-galaxy ratio is rather low inside the clusters. If we assume that Mg ii absorbers are mainly contributed by the CGM of massive star-forming galaxies, a typical halo size of cluster galaxies is smaller than that of field galaxies by 30 ± 10 per cent. This finding supports that galaxy haloes can be truncated by interaction with the host cluster.


2019 ◽  
Vol 629 ◽  
pp. A7
Author(s):  
Mikkel O. Lindholmer ◽  
Kevin A. Pimbblet

In this work we use the property that, on average, star formation rate increases with redshift for objects with the same mass – the so called galaxy main sequence – to measure the redshift of galaxy clusters. We use the fact that the general galaxy population forms both a quenched and a star-forming sequence, and we locate these ridges in the SFR–M⋆ plane with galaxies taken from the Sloan Digital Sky Survey in discrete redshift bins. We fitted the evolution of the galaxy main sequence with redshift using a new method and then subsequently apply our method to a suite of X-ray selected galaxy clusters in an attempt to create a new distance measurement to clusters based on their galaxy main sequence. We demonstrate that although it is possible in several galaxy clusters to measure the main sequences, the derived distance and redshift from our galaxy main sequence fitting technique has an accuracy of σz = ±0.017 ⋅ (z + 1) and is only accurate up to z ≈ 0.2.


2019 ◽  
Vol 628 ◽  
pp. A13 ◽  
Author(s):  
A. Streblyanska ◽  
A. Aguado-Barahona ◽  
A. Ferragamo ◽  
R. Barrena ◽  
J. A. Rubiño-Martín ◽  
...  

Aims. The second catalogue of Planck Sunyaev–Zeldovich (SZ) sources, hereafter PSZ2, is the largest sample of galaxy clusters selected through their SZ signature in the full sky. At the time of publication, 21% of these objects had no known counterpart at other wavelengths. Using telescopes at the Canary Island observatories, we conducted the long-term observational programme 128-MULTIPLE-16/15B (hereafter LP15), a large and complete optical follow-up campaign of all the unidentified PSZ2 sources in the northern sky, with declinations above −15° and no correspondence in the first Planck catalogue PSZ1. The main aim of LP15 is to validate all those SZ cluster candidates, and to contribute to the characterization of the actual purity and completeness of full Planck SZ sample. In this paper, we describe the full programme and present the results of the first year of observations. Methods. The LP15 programme was awarded 44 observing nights, spread over two years in three telescopes at the Roque de los Muchachos Observatory. The full LP15 sample comprises 190 previously unidentified PSZ2 sources. For each target, we performed deep optical imaging and spectroscopy. Our validation procedure combined this optical information with SZ emission as traced by the publicly available Planck Compton y-maps. The final classification of the new galaxy clusters as optical counterparts of the SZ signal is established according to several quantitative criteria based on the redshift, velocity dispersion, and richness of the clusters. Results. This paper presents the detailed study of 106 objects out of the LP15 sample, corresponding to all the observations carried out during the first year of the programme. We confirmed the optical counterpart for 41 new PSZ2 sources, 31 of them being validated using also velocity dispersion based on our spectroscopic information. This is the largest dataset of newly confirmed PSZ2 sources without any previous optical information. All the confirmed counterparts are rich structures (i.e. they show high velocity dispersion), and are well aligned with the nominal Planck coordinates (i.e. ∼70% of them are located at less than 3′ distance). In total, 65 SZ sources are classified as unconfirmed, 57 of them being due to the absence of an optical over-density, and eight of them due to a weak association with the observed SZ decrement. Most of the sources with no optical counterpart are located at low galactic latitudes and present strong galactic cirrus in the optical images, the dust contamination being the most probable explanation for their inclusion in the PSZ2 catalogue.


2020 ◽  
Vol 642 ◽  
pp. A25
Author(s):  
P. François ◽  
S. Wanajo ◽  
E. Caffau ◽  
N. Prantzos ◽  
W. Aoki ◽  
...  

Context. Unevolved metal-poor stars bore witness to the early evolution of the Galaxy, and the determination of their detailed chemical composition is an important tool to understand its chemical history. The study of their chemical composition can also be used to constrain the nucleosynthesis of the first generation of supernovae that enriched the interstellar medium. Aims. We aim to observe a sample of extremely metal-poor star (EMP stars) candidates selected from the Sloan Digital Sky Survey data release 12 (SDSS DR12) and determine their chemical composition. Methods. We obtained high-resolution spectra of a sample of five stars using HDS on Subaru telescope and used standard 1D models to compute the abundances. The stars we analysed have a metallicity [Fe/H] of between −3.50 and −4.25 dex. Results. We confirm that the five metal-poor candidates selected from low-resolution spectra are very metal poor. We present the discovery of a new ultra metal-poor star (UMP star) with a metallicity of [Fe/H] = −4.25 dex (SDSS J1050032.34−241009.7). We measured in this star an upper limit of lithium (log(Li/H) ≤ 2.0. We found that the four most metal-poor stars of our sample have a lower lithium abundance than the Spite plateau lithium value. We obtain upper limits for carbon in the sample of stars. None of them belong to the high carbon band. We measured abundances of Mg and Ca in most of the stars and found three new α-poor stars.


2020 ◽  
Vol 499 (3) ◽  
pp. 3792-3805
Author(s):  
Lawrence E Bilton ◽  
Kevin A Pimbblet ◽  
Yjan A Gordon

ABSTRACT We produce a kinematic analysis of AGN-hosting cluster galaxies from a sample of 33 galaxy clusters selected using the X-ray Clusters Database (BAX) and populated with galaxies from the Sloan Digital Sky Survey Data Release 8. The 33 galaxy clusters are delimited by their relative intensity of member galaxy substructuring as a proxy to core merging to derive two smaller sub-samples of 8 dynamically active (merging) and 25 dynamically relaxed (non-merging) states. The AGN were selected for each cluster sub-sample by employing the WHAN diagram to the strict criteria of log10([N ii]/Hα) ≥ −0.32 and EWHα ≥ 6 Å, providing pools of 70 mergings and 225 non-merging AGN sub-populations. By co-adding the clusters to their respective dynamical states to improve the signal-to-noise ratio of our AGN sub-populations we find that merging galaxy clusters on average host kinematically active AGN between 0–1.5r200 as r200 → 0, where their velocity dispersion profile (VDP) presents a significant deviation from the non-AGN sub-population VDP by ≳3σ. This result is indicative that the AGN-hosting cluster galaxies have recently coalesced on to a common potential. Further analysis of the composite distributions illustrates non-merging AGN-hosting sub-populations have, on average, already been accreted and predominantly lie within backsplash regions of the projected phase-space. This suggests merging cluster dynamical states hold relatively younger AGN sub-populations kinematically compared with those found in non-merging cluster dynamical states.


Sign in / Sign up

Export Citation Format

Share Document