scholarly journals Homogeneity of 67P/Churyumov-Gerasimenko as seen by CONSERT: implication on composition and formation

2019 ◽  
Vol 630 ◽  
pp. A6 ◽  
Author(s):  
A. Herique ◽  
W. Kofman ◽  
S. Zine ◽  
J. Blum ◽  
J.-B. Vincent ◽  
...  

Context. After the landing of Philae, CONSERT probed the nucleus of 67P/Churyumov-Gerasimenko (67P) and observed no heterogeneities at metric scale within the probed part of the small lobe of 67P. Further studies have then quantified the observed homogeneity in terms of maximum permittivity contrast versus the typical size of heterogeneities. Aims. The aim of this article is to interpret the sensitivity limits of CONSERT measurements in terms of composition, and to provide constraints on the maximum variability in composition, porosity, and local dust-to-ice ratio. Methods. The sensitivity of CONSERT measurements to local variations in density, dust-to-ice ratio, and composition was analyzed using permittivity modeling of mixtures. Results. We interpret the maximum detectable heterogeneity size and contrast in terms of composition and porosity of the nucleus. The sensitivity to porosity is ±10 percent points for heterogeneities with a characteristic length scale of a few meters; the sensitivity to local variations in the composition is limited. Conclusions. In terms of accretion, our results are compatible only with scenarios generating porosity heterogeneities at scales lower than one meter, or with porosity variations smaller than ±10 percent points. This is clearly compatible with an accretion model of a gentle gravitational collapse of a pebble cloud.

1998 ◽  
Vol 08 (PR8) ◽  
pp. Pr8-159-Pr8-166 ◽  
Author(s):  
S. Fouvry ◽  
Ph. Kapsa ◽  
F. Sidoroff ◽  
L. Vincent

Author(s):  
Thomas Foken ◽  
Michael Börngen

AbstractIt has been repeatedly assumed that Heinz Lettau found the Obukhov length in 1949 independently of Obukhov in 1946. However, it was not the characteristic length scale, the Obukhov length L, but the ratio of height and the Obukhov length (z/L), the Obukhov stability parameter, that he analyzed. Whether Lettau described the parameter z/L independently of Obukhov is investigated herein. Regardless of speculation about this, the significant contributions made by Lettau in the application of z/L merit this term being called the Obukhov–Lettau stability parameter in the future.


MRS Bulletin ◽  
1994 ◽  
Vol 19 (5) ◽  
pp. 11-13 ◽  
Author(s):  
D.A. Weitz

Disorder characterizes most of the materials that surround us in nature. Despite their great technological importance, materials with ordered crystalline structures are relatively rare. Examples of disordered materials, however, abound, and their forms can be as varied as their number. The paper on which these words are printed has a disordered structure composed of a highly interconnected network of fibers. It has also been coated with particulate materials to improve its properties and the visibility of the ink. The reading glasses you may require to focus on these words are composed of a glass or polymer material that is disordered on a molecular level. Even the structure of your hand holding this magazine is disordered. These and virtually all other disordered materials are typically parameterized by a characteristic length scale. Above this length scale, the material is homogeneous and the effects of the disorder are not directly manifest; below this characteristic length the disorder of the structure dominates, directly affecting the properties.The range of characteristic length scales for the disordered materials around us is immense. For the glass or polymer of your reading glasses, it is microscopic; the disorder is apparent only at the molecular level, while above this level the material is homogeneous. For the paper on which this magazine is printed, the scale is larger; the paper is white partly because the disordered fiber network has within it structures that are comparable in size to the wavelength of light, resulting in strong scattering of the light.


2011 ◽  
Vol 13 (3) ◽  
pp. 215-218 ◽  
Author(s):  
Antoinette Tordesillas ◽  
Giles Hunt ◽  
Jingyu Shi

Sign in / Sign up

Export Citation Format

Share Document