scholarly journals Revisiting Proxima with ESPRESSO

2020 ◽  
Vol 639 ◽  
pp. A77 ◽  
Author(s):  
A. Suárez Mascareño ◽  
J. P. Faria ◽  
P. Figueira ◽  
C. Lovis ◽  
M. Damasso ◽  
...  

Context. The discovery of Proxima b marked one of the most important milestones in exoplanetary science in recent years. Yet the limited precision of the available radial velocity data and the difficulty in modelling the stellar activity calls for a confirmation of the Earth-mass planet. Aims. We aim to confirm the presence of Proxima b using independent measurements obtained with the new ESPRESSO spectrograph, and refine the planetary parameters taking advantage of its improved precision. Methods. We analysed 63 spectroscopic ESPRESSO observations of Proxima (Gl 551) taken during 2019. We obtained radial velocity measurements with a typical radial velocity photon noise of 26 cm s−1. We combined these data with archival spectroscopic observations and newly obtained photometric measurements to model the stellar activity signals and disentangle them from planetary signals in the radial velocity (RV) data. We ran a joint Markov chain Monte Carlo analysis on the time series of the RV and full width half maximum of the cross-correlation function to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with the stellar activity signals. Results. We confirm the presence of Proxima b independently in the ESPRESSO data and in the combined ESPRESSO+ HARPS+UVES dataset. The ESPRESSO data on its own shows Proxima b at a period of 11.218 ± 0.029 days, with a minimum mass of 1.29 ± 0.13 M⊕. In the combined dataset we measure a period of 11.18427 ± 0.00070 days with a minimum mass of 1.173 ± 0.086 M⊕. We get a clear measurement of the stellar rotation period (87 ± 12 d) and its induced RV signal, but no evidence of stellar activity as a potential cause for the 11.2 days signal. We find some evidence for the presence of a second short-period signal, at 5.15 days with a semi-amplitude of only 40 cm s−1. If caused by a planetary companion, it would correspond to a minimum mass of 0.29 ± 0.08 M⊕. We find that forthe case of Proxima, the full width half maximum of the cross-correlation function can be used as a proxy for the brightness changes and that its gradient with time can be used to successfully detrend the RV data from part of the influence of stellar activity. The activity-induced RV signal in the ESPRESSO data shows a trend in amplitude towards redder wavelengths. Velocities measured using the red end of the spectrograph are less affected by activity, suggesting that the stellar activity is spot dominated. This could be used to create differential RVs that are activity dominated and can be used to disentangle activity-induced and planetary-induced signals. The data collected excludes the presence of extra companions with masses above 0.6 M⊕ at periods shorter than 50 days.

2004 ◽  
Vol 202 ◽  
pp. 121-123
Author(s):  
N. C. Santos ◽  
M. Mayor ◽  
D. Naef ◽  
D. Queloz ◽  
S. Udry

In this contribution we present the results of the application of the bisector of the cross-correlation function as a diagnostic of activity-related radial-velocity variations. The results show that the technique is very effective. We present examples for which the application of the bisector analysis was essential to establish the planetary nature of the candidate or to exclude an orbital signature. An analysis of the behaviour of the bisector for active dwarfs of different spectral types shows that the relation between the bisector and the radial-velocity variation depends in a great extent on thevsiniof the star. The results may shed a new light on the intrinsic sources of radial-velocity variation for different types of solar-type dwarfs.


1999 ◽  
Vol 170 ◽  
pp. 325-330
Author(s):  
B. Khalesseh

AbstractNew radial velocity measurements of the Algol-type eclipsing binary BD +52 °2009, based on Reticon observations, are presented. The velocity measures are based on fitting theoretical profiles, generated by a physical model of the binary, to the observed cross-correlation function (ccf). Such profiles match this function very well, much better in fact than Gaussian profiles, which are generally used. Measuring the ccf’s with Gaussian profiles yields the following results: mp sin3i = 2.55 ± 0.05m⊙, ms sin3i = 1.14 ± 0.03m⊙, (ap + as) sin i = 7.34 ± 0.05R⊙, and mp/ms = 2.23 ± 0.05. However, measuring the ccf’s with theoretical profiles yields a mass ratio of 2.33 and following results: mp sin3i = 2.84 ± 0.05m⊙, ms sin3i = 1.22 ± 0.03m⊙, (ap + as) sin i = 7.56 ± 0.05R⊙. The system has a semi-detached configuration. By combining the solution of a previously published light curve with the spectroscopic orbit, one can obtain the following physical parameters: mp = 2.99m⊙, ms3 = 1.28m⊙, < Tp >= 9600K, < Ts >= 5400K, < Rp >= 2.35R⊙, < Rs >= 2.12R⊙. The system consists of an A0 primary and a G2 secondary.


2019 ◽  
Vol 622 ◽  
pp. A131 ◽  
Author(s):  
U. Simola ◽  
X. Dumusque ◽  
J. Cisewski-Kehe

Context. Stellar activity is one of the primary limitations to the detection of low-mass exoplanets using the radial-velocity (RV) technique. Stellar activity can be probed by measuring time-dependent variations in the shape of the cross-correlation function (CCF). It is therefore critical to measure with high-precision these shape variations to decorrelate the signal of an exoplanet from spurious RV signals caused by stellar activity. Aims. We propose to estimate the variations in shape of the CCF by fitting a Skew Normal (SN) density which, unlike the commonly employed Normal density, includes a Skewness parameter to capture the asymmetry of the CCF induced by stellar activity and the convective blueshift. Methods. We compared the performances of the proposed method to the commonly employed Normal density using both simulations and real observations with different levels of activity and signal-to-noise ratios. Results. When considering real observations, the correlation between the RV and the asymmetry of the CCF and between the RV and the width of the CCF are stronger when using the parameters estimated with the SN density rather than those obtained with the commonly employed Normal density. In particular, the strongest correlations have been obtained when using the mean of the SN as an estimate for the RV. This suggests that the CCF parameters estimated using a SN density are more sensitive to stellar activity, which can be helpful when estimating stellar rotational periods and when characterizing stellar activity signals. Using the proposed SN approach, the uncertainties estimated on the RV defined as the median of the SN are on average 10% smaller than the uncertainties calculated on the mean of the Normal. The uncertainties estimated on the asymmetry parameter of the SN are on average 15% smaller than the uncertainties measured on the Bisector Inverse Slope Span (BIS SPAN), which is the commonly used parameter to evaluate the asymmetry of the CCF. We also propose a new model to account for stellar activity when fitting a planetary signal to RV data. Based on simple simulations, we were able to demonstrate that this new model improves the planetary detection limits by 12% compared to the model commonly used to account for stellar activity. Conclusions. The SN density is a better model than the Normal density for characterizing the CCF since the correlations used to probe stellar activity are stronger and the uncertainties of the RV estimate and the asymmetry of the CCF are both smaller.


Author(s):  
Pramod Chamarthy ◽  
Steven T. Wereley ◽  
Suresh V. Garimella

In μPIV, for a uniform velocity field the displacement of the cross-correlation function gives the velocity of the fluid and the broadening of the peak-width represents the amount of Brownian motion present. In the presence of a linear or a parabolic shear, the shape of the cross-correlation function would have both the Brownian motion information as well as the velocity distribution information. In the present work, the broadening of the cross-correlation function caused by the velocity gradient was subtracted from the total peak broadening in order to isolate the Brownian motion information and thus infer temperature. To the authors' knowledge, this technique has not been applied to measure the temperature of a moving fluid. The experiments were conducted in a gravity driven flow through a tube surrounded by a constant temperature water bath.


Sign in / Sign up

Export Citation Format

Share Document