radial velocity variation
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

2022 ◽  
Vol 924 (2) ◽  
pp. 67
Author(s):  
Jules P. Halpern ◽  
John R. Thorstensen

Abstract We conducted time-resolved optical spectroscopy and/or photometry of 10 cataclysmic binaries that were discovered in hard X-ray surveys, with the goal of measuring their orbital periods and searching for evidence that they are magnetic. Four of the objects in this study are new optical identifications: IGR J18017−3542, PBC J1841.1+0138, IGR J18434−0508, and Swift J1909.3+0124. A 311.8 s, coherent optical pulsation is detected from PBC J1841.1+0138, as well as eclipses with a period of 0.221909 days. A 152.49 s coherent period is detected from IGR J18434−0508. A probable period of 389 s is seen in IGR J18151−1052, in agreement with a known X-ray spin period. We also detect a period of 803.5 s in an archival X-ray observation of Swift J0717.8−2156. The last four objects are thus confirmed magnetic cataclysmic variables of the intermediate polar class. An optical period of 1554 s in AX J1832.3−0840 also confirms the known X-ray spin period, but a stronger signal at 2303 s is present whose interpretation is not obvious. We also studied the candidate intermediate polar Swift J0820.6−2805, which has low and high states differing by ≈4 mag and optical periods or quasi-periodic oscillations not in agreement with proposed X-ray periods. Of note is an unusually long 2.06-day orbital period for Swift J1909.3+0124, manifest in the radial velocity variation of photospheric absorption lines of an early K-type companion star. The star must be somewhat evolved if it is to fill its Roche lobe.


2021 ◽  
Vol 57 (1) ◽  
pp. 39-55
Author(s):  
E. Yoldaş ◽  
H. A. Dal

We present findings about the nature of KOI-258. Its temperature was found to be 6500 ± 200 K from its spectrum, which also indicates that the target is a single main sequence star despite the existence of a radial velocity variation with a small amplitude. Ca II H, K lines indicate the existence of magnetic activity, though there is no remarkable excess or variation in the Hα line. We found 51 flares with a frequency of 0.00186 h−1, whose plateau value is 0.659 s. Apart from the flares, we found 420 frequencies due to solar-like oscillations at out-of-eclipses. Removing these 420 frequencies, we demonstrated three different transits caused by three exo-planets. Their radii were found to be 2.33 R_⊕ for the first planet, 0.53 R_⊕ for the second one, and 1.15 R_⊕ for the third planet. Consequently, KOI-258 is an oscillating, single, main sequence star, with in a planetary system and remarkable flare activity.


2020 ◽  
Vol 496 (1) ◽  
pp. L11-L15 ◽  
Author(s):  
R V Baluev ◽  
E N Sokov ◽  
S Hoyer ◽  
C Huitson ◽  
José A R S da Silva ◽  
...  

ABSTRACT We homogeneously reanalyse 124 transit light curves for the WASP-4 b hot Jupiter. This set involved new observations secured in 2019 and nearly all observations mentioned in the literature, including high-accuracy GEMINI/GMOS transmission spectroscopy of 2011–2014 and TESS observations of 2018. The analysis confirmed a non-linear transit timing variation (TTV) trend with $P/|\dot{P}|\sim \hbox{17-30}$ Myr (1σ range), implying only half of the initial decay rate estimation. The trend significance is at least 3.4σ in the aggressively conservative treatment. Possible radial acceleration due to unseen companions is not revealed in Doppler data covering seven years 2007–2014, and radial acceleration of −15 m s−1 yr−1 reported in a recent preprint by another team is not confirmed. If present, it is a very non-linear radial velocity variation. Assuming that the entire TTV is tidal in nature, the tidal quality factor $Q_\star ^{\prime }\sim \hbox{(4.5-8.5)}\times 10^4$ does not reveal a convincing disagreement with available theory predictions.


2020 ◽  
Vol 493 (1) ◽  
pp. 973-985 ◽  
Author(s):  
Matías R Díaz ◽  
James S Jenkins ◽  
Davide Gandolfi ◽  
Eric D Lopez ◽  
Maritza G Soto ◽  
...  

ABSTRACT The Neptune desert is a feature seen in the radius-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here, we report the Transiting Exoplanet Survey Satellite (TESS) discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC 8003-1117-1 (TOI-132). TESS photometry shows transit-like dips at the level of ∼1400 ppm occurring every ∼2.11 d. High-precision radial velocity follow-up with High Accuracy Radial Velocity Planet Searcher confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of 11.38 $^{+0.84}_{-0.85}$ m s−1, which, when combined with the stellar mass of 0.97 ± 0.06 M⊙, provides a planetary mass of 22.40$^{+1.90}_{-1.92}$ M⊕. Modelling the TESS light curve returns a planet radius of 3.42$^{+0.13}_{-0.14}$ R⊕, and therefore the planet bulk density is found to be 3.08$^{+0.44}_{-0.46}$ g cm−3. Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3$^{+1.2}_{-2.3}$ per cent. TOI-132 b is a TESS Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding of the Neptune desert.


2019 ◽  
Vol 71 (5) ◽  
Author(s):  
Shilin Zhang ◽  
Haining Li ◽  
Gang Zhao ◽  
Wako Aoki ◽  
Tadafumi Matsuno

Abstract We have performed chemical abundance analyses for a newly discovered metal-poor turn-off star (Teff = 6276 K, log g = 3.93, [Fe$/$H] = −2.93), LAMOST J011939.222−012150.45, based on high-resolution and high signal-to-noise ratio spectra in both optical and near-UV obtained by Subaru. Abundances have been derived for 20 elements, including 11 light elements such as C, N, Na, Mg, etc., and 9 neutron-capture elements from Sr to Pb. This object is a carbon-enhanced metal-poor star with a large carbon excess of [C$/$Fe] = +2.26. LAMOST J011939.222−012150.45 shows extreme enhancement in s-process elements, especially for Ba, La, and Pb ([Ba$/$Fe] = +3.16 ± 0.18, [La$/$Fe] = +2.29 ± 0.24, [Pb$/$Fe] = +3.38 ± 0.12). A very clear radial velocity variation has also been detected, providing evidence of the existence of a companion. Interestingly, even without any scaling, the observed abundance pattern from light to heavy neutron-capture elements agrees well with predictions of accretion from a companion asymptotic giant branch (AGB) star. Considering the evolutionary status of this object, its surface material is very likely to be completely accreted from its AGB companion and has been preserved until today.


2012 ◽  
Vol 8 (S293) ◽  
pp. 197-200
Author(s):  
Jan Marie Andersen ◽  
Heidi Korhonen

AbstractStellar magnetic activity manifests itself in a variety of ways including starspots–cool, dark regions on the stellar surface. Starspots can cause variations (‘jitter’) in spectral line-profiles which can mimic the radial velocity (RV) variations caused by an orbiting planet, or create RV noise that can drown out a planetary signature. Cool, low-mass M dwarf stars can be highly active, which can make detection of potentially habitable planets around these stars difficult. We investigate radial velocity variations caused by different activity (spot) patterns on M dwarf stars in order to determine the limits of detectability for small planets orbiting active M dwarfs. We report on our progress toward the aim of answering the following questions: What types of spot patterns are realistic for M dwarf stars? What effect will spots have on M dwarf RV measurements? Can jitter from M dwarf spots mimic planetary signals? What is the ideal observing wavelength to reduce M dwarf jitter?


2011 ◽  
Vol 63 (6) ◽  
pp. L67-L71 ◽  
Author(s):  
Norio Narita ◽  
Teruyuki Hirano ◽  
Bun'ei Sato ◽  
Hiroki Harakawa ◽  
Akihiko Fukui ◽  
...  

2011 ◽  
Vol 7 (S282) ◽  
pp. 319-320
Author(s):  
J. Nemravová ◽  
P. Harmanec ◽  
P. Koubský ◽  
A. Miroshnichenko

AbstractThere are several types of binary stars which show non-periodical radial velocity variations with the amplitude larger than those connected with the orbital motion. The non-periodical changes have to be removed in order to study the orbital ones. We propose three removal techniques, two of which are based on the trend modeling with continuous functions and the third one that takes the orbital motion into account.


2010 ◽  
Vol 6 (S276) ◽  
pp. 121-125
Author(s):  
Rainer J. Klement ◽  
Johny Setiawan ◽  
Thomas Henning ◽  
Hans-Walter Rix ◽  
Boyke Rochau ◽  
...  

AbstractWe report the detection of a planetary companion around HIP 13044, a metal-poor red horizontal branch star belonging to a stellar halo stream that results from the disruption of an ancient Milky Way satellite galaxy. The detection is based on radial velocity observations with FEROS at the 2.2-m MPG/ESO telescope. The periodic radial velocity variation ofP= 16.2 days can be distinguished from the periods of the stellar activity indicators. We computed a minimum planetary mass of 1.25 Mjupand an orbital semimajor axis of 0.116 AU for the planet. This discovery is unique in three aspects: First, it is the first planet detection around a star with a metallicity much lower than few percent of the solar value; second, the planet host star resides in a stellar evolutionary stage that is still unexplored in the exoplanet surveys; third, the planetary system HIP 13044 most likely has an extragalactic origin in a disrupted former satellite of the Milky Way.


Sign in / Sign up

Export Citation Format

Share Document