scholarly journals Probing the thermodynamic conditions of the heliosheath plasma by shock wave propagation

2020 ◽  
Vol 642 ◽  
pp. A144
Author(s):  
H. J. Fahr ◽  
M. Heyl

Context. The pressure equilibrium between the inner heliosheath and the outer heliosheath (referred to as the local interstellar medium) is an eminent theoretical and practical problem; theoretical, because the relevant pressure carriers have to be identified, and practical, because data must be gathered in order to confirm such a pressure equilibrium. The problem is closely connected with the stability of the heliopause, that is, of the tangential discontinuity between these two counterflowing media, and is of utmost importance for understanding the stability of the whole circumsolar plasma structure. Aims. In this paper we analyze the thermodynamic conditions of the multi-fluid plasma between the solar wind termination shock and the heliopause determining the total heliosheath pressure. We look into this problem from a theoretical standpoint and revisit theoretical descriptions of the solar wind plasma after its passage over the solar wind termination shock, thereafter forming the subsonic heliosheath region. Methods. Hereby we take into account the 3D magnetohydrodynamics shock conditions and the resulting 3D temperature structure of the downstream plasma flow. We use a kind of seismological procedure to probe the heliosheath plasma by inquiring into the propagation conditions of traveling shock wave perturbations in this predetermined 3D heliosheath plasma structure. We discuss the fact that the front geometry of such a traveling shock wave most probably does not remain spherical, if it was to begin with, due to asymmetric shock propagation conditions. In contrast, the wave front is likely to become strongly deformed into an upwind bulge. Results. Concerning the plasma pressure, in addition to solar wind and pick-up proton pressures, we have to take into account the solar wind electron pressure which as a surprise turns out to be of comparable magnitude. As a consequence, the characteristic propagation speed of the traveling shock wave in the weakly magnetized heliosheath plasma is given as a mixed speed expressed by the sound speeds of the protons and the electrons. We describe local low-energy proton density signatures that can be found in Voyager-2 proton data as a consequence of traveling shock wave passages and show that the total local plasma pressure can be directly derived from them.

2004 ◽  
Vol 22 (8) ◽  
pp. 3063-3072 ◽  
Author(s):  
U. W. Langner ◽  
M. S. Potgieter

Abstract. The interest in the role of the solar wind termination shock and heliosheath in cosmic ray modulation studies has increased significantly as the Voyager 1 and 2 spacecraft approach the estimated position of the solar wind termination shock. The effect of the solar wind termination shock on charge-sign dependent modulation, as is experienced by galactic cosmic ray Helium (He++) and anomalous Helium (He+), is the main topic of this work, and is complementary to the previous work on protons, anti-protons, electrons, and positrons. The modulation of galactic and anomalous Helium is studied with a numerical model including a more fundamental and comprehensive set of diffusion coefficients, a solar wind termination shock with diffusive shock acceleration, a heliosheath and particle drifts. The model allows a comparison of modulation with and without a solar wind termination shock and is applicable to a number of cosmic ray species during both magnetic polarity cycles of the Sun. The modulation of Helium, including an anomalous component, is also done to establish charge-sign dependence at low energies. We found that the heliosheath is important for cosmic ray modulation and that its effect on modulation is very similar for protons and Helium. The local Helium interstellar spectrum may not be known at energies


1992 ◽  
pp. 365-368 ◽  
Author(s):  
K.C. Hsieh ◽  
K.L. Shih ◽  
J.R. Jokipii ◽  
M.A. Gruntman

Sign in / Sign up

Export Citation Format

Share Document