scholarly journals Electron-proton co-acceleration on relativistic shocks in extreme-TeV blazars

Author(s):  
A. Zech ◽  
M. Lemoine
Keyword(s):  
2020 ◽  
Vol 499 (4) ◽  
pp. 4961-4971
Author(s):  
Hirotaka Ito ◽  
Amir Levinson ◽  
Ehud Nakar

ABSTRACT Strong explosion of a compact star surrounded by a thick stellar wind drives a fast (>0.1c) radiation mediated shock (RMS) that propagates in the wind, and ultimately breaks out gradually once photons start escaping from the shock transition layer. In exceptionally strong or aspherical explosions, the shock velocity may even be relativistic. The properties of the breakout signal depend on the dynamics and structure of the shock during the breakout phase. Here we present, for the first time, spectra and light curves of the breakout emission of fast Newtonian and mildly relativistic shocks, that were calculated using self-consistent Monte Carlo simulations of finite RMS with radiative losses. We find a strong dependence of the νFν peak on shock velocity, ranging from ∼1 keV for vs/c = 0.1 to ∼100 keV for vs/c = 0.5, with a shift to lower energies as losses increase. For all cases studied the spectrum below the peak exhibits a nearly flat component (Fν ∼ ν0) that extends down to the break frequency below which absorption becomes important. This implies much bright optical/ultraviolet emission than hitherto expected. The computed light curves show a gradual rise over tens to hundreds of seconds for representative conditions. The application to SN 2008D/XRT 080109 and the detectability limits are also discussed. We predict a detection rate of about one per year with eROSITA.


2011 ◽  
Vol 733 (1) ◽  
pp. 63 ◽  
Author(s):  
Mario A. Riquelme ◽  
Anatoly Spitkovsky

2012 ◽  
Vol 08 ◽  
pp. 364-367
Author(s):  
YOSUKE MIZUNO ◽  
MARTIN POHL ◽  
JACEK NIEMIEC ◽  
BING ZHANG ◽  
KEN-ICHI NISHIKAWA ◽  
...  

We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that the so-called small-scale dynamo is occurring in the postshock region. We also find that the amplitude of magnetic-field amplification depends on the direction of the mean preshock magnetic field.


2015 ◽  
Vol 191 (1-4) ◽  
pp. 519-544 ◽  
Author(s):  
L. Sironi ◽  
U. Keshet ◽  
M. Lemoine

2018 ◽  
Vol 858 (2) ◽  
pp. 93 ◽  
Author(s):  
Masanori Iwamoto ◽  
Takanobu Amano ◽  
Masahiro Hoshino ◽  
Yosuke Matsumoto

Sign in / Sign up

Export Citation Format

Share Document