scholarly journals Stellar clusters in dwarf galaxies

2006 ◽  
Vol 448 (2) ◽  
pp. 471-478 ◽  
Author(s):  
L. Vanzi ◽  
M. Sauvage
2002 ◽  
Vol 207 ◽  
pp. 357-366
Author(s):  
Eduardo Telles

Stellar Clusters are identified in images and in the spectra of these star forming dwarf galaxies. These Stellar Clusters have properties similar to those observed in other violent star forming galaxies and may the elementary entities of a starburst.


2019 ◽  
Vol 489 (2) ◽  
pp. 2746-2754
Author(s):  
F Urrutia Zapata ◽  
M Fellhauer ◽  
A G Alarcón Jara ◽  
D R Matus Carrillo ◽  
C A Aravena

Abstract In the past decades, extended old stellar clusters have been observed. These extended objects cover a large range in masses, from extended clusters or faint fuzzies to ultracompact dwarf galaxies. It has been demonstrated that these extended objects can be the result of the merging of star clusters in cluster complexes (small regions in which dozens to hundreds of star clusters form). This formation channel is called the ‘Merging Star Cluster Scenario’. This work tries to explain the formation of compact ellipticals in the same theoretical framework. Compact ellipticals are a comparatively rare class of spheroidal galaxies, possessing very small effective radii and high central surface brightnesses. With the use of numerical simulations we show that the merging star cluster scenario, adopted for higher masses, as found with those galaxies, can reproduce all major characteristics and the dynamics of these objects. This opens up a new formation channel to explain the existence of compact elliptical galaxies.


1999 ◽  
Vol 118 (6) ◽  
pp. 2723-2733 ◽  
Author(s):  
David I. Méndez ◽  
César Esteban
Keyword(s):  

Author(s):  
Myoungwon Jeon ◽  
Volker Bromm ◽  
Gurtina Besla ◽  
Jinmi Yoon ◽  
Yumi Choi

Abstract CEMP-no stars, a subset of carbon enhanced metal poor (CEMP) stars ($\rm [C/Fe]\ge 0.7$ and $\rm [Fe/H]\lesssim -1$) have been discovered in ultra-faint dwarf (UFD) galaxies, with Mvir ≈ 108 M⊙ and M* ≈ 103 − 104 M⊙ at z = 0, as well as in the halo of the Milky Way (MW). These CEMP-no stars are local fossils that may reflect the properties of the first (Pop III) and second (Pop II) generation of stars. However, cosmological simulations have struggled to reproduce the observed level of carbon enhancement of the known CEMP-no stars. Here we present new cosmological hydrodynamic zoom-in simulations of isolated UFDs that achieve a gas mass resolution of mgas ≈ 60 M⊙. We include enrichment from Pop III faint supernovae (SNe), with ESN = 0.6 × 1051 erg, to understand the origin of CEMP-no stars. We confirm that Pop III and Pop II stars are mainly responsible for the formation of CEMP and C-normal stars respectively. New to this study, we find that a majority of CEMP-no stars in the observed UFDs and the MW halo can be explained by Pop III SNe with normal explosion energy (ESN = 1.2 × 1051 erg) and Pop II enrichment, but faint SNe might also be needed to produce CEMP-no stars with $\rm [C/Fe]\gtrsim 2$, corresponding to the absolute carbon abundance of $\rm A(C)\gtrsim 6.0$. Furthermore, we find that while we create CEMP-no stars with high carbon ratio $\rm [C/Fe]\approx 3-4$, by adopting faint SNe, it is still challenging to reproduce CEMP-no stars with extreme level of carbon abundance of $\rm A(C)\approx 7.0-7.5$, observed both in the MW halo and UFDs.


2020 ◽  
Vol 500 (4) ◽  
pp. 4937-4957 ◽  
Author(s):  
G Martin ◽  
R A Jackson ◽  
S Kaviraj ◽  
H Choi ◽  
J E G Devriendt ◽  
...  

ABSTRACT Dwarf galaxies (M⋆ < 109 M⊙) are key drivers of mass assembly in high-mass galaxies, but relatively little is understood about the assembly of dwarf galaxies themselves. Using the NewHorizon cosmological simulation (∼40 pc spatial resolution), we investigate how mergers and fly-bys drive the mass assembly and structural evolution of around 1000 field and group dwarfs up to z = 0.5. We find that, while dwarf galaxies often exhibit disturbed morphologies (5 and 20 per cent are disturbed at z = 1 and z = 3 respectively), only a small proportion of the morphological disturbances seen in dwarf galaxies are driven by mergers at any redshift (for 109 M⊙, mergers drive under 20 per cent morphological disturbances). They are instead primarily the result of interactions that do not end in a merger (e.g. fly-bys). Given the large fraction of apparently morphologically disturbed dwarf galaxies which are not, in fact, merging, this finding is particularly important to future studies identifying dwarf mergers and post-mergers morphologically at intermediate and high redshifts. Dwarfs typically undergo one major and one minor merger between z = 5 and z = 0.5, accounting for 10 per cent of their total stellar mass. Mergers can also drive moderate star formation enhancements at lower redshifts (3 or 4 times at z = 1), but this accounts for only a few per cent of stellar mass in the dwarf regime given their infrequency. Non-merger interactions drive significantly smaller star formation enhancements (around two times), but their preponderance relative to mergers means they account for around 10 per cent of stellar mass formed in the dwarf regime.


Sign in / Sign up

Export Citation Format

Share Document