scholarly journals Development of CAD System for Automatic Lung Nodule Detection: A Review

2021 ◽  
Vol 41 ◽  
pp. 04001
Author(s):  
Sekar Sari ◽  
Indah Soesanti ◽  
Noor Akhmad Setiawan

Lung cancer is a type of cancer that spreads rapidly and is the leading cause of mortality globally. The Computer-Aided Detection (CAD) system for automatic lung cancer detection has a significant influence on human survival. In this article, we report the summary of relevant literature on CAD systems for lung cancer detection. The CAD system includes preprocessing techniques, segmentation, lung nodule detection, and false-positive reduction with feature extraction. In evaluating some of the work on this topic, we used a search of selected literature, the dataset used for method validation, the number of cases, the image size, several techniques in nodule detection, feature extraction, sensitivity, and false-positive rates. The best performance CAD systems of our analysis results show the sensitivity value is high with low false positives and other parameters for lung nodule detection. Furthermore, it also uses a large dataset, so the further systems have improved accuracy and precision in detection. CNN is the best lung nodule detection method and need to develop, it is preferable because this method has witnessed various growth in recent years and has yielded impressive outcomes. We hope this article will help professional researchers and radiologists in developing CAD systems for lung cancer detection.

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Panpan Wu ◽  
Xuanchao Sun ◽  
Ziping Zhao ◽  
Haishuai Wang ◽  
Shirui Pan ◽  
...  

The classification process of lung nodule detection in a traditional computer-aided detection (CAD) system is complex, and the classification result is heavily dependent on the performance of each step in lung nodule detection, causing low classification accuracy and high false positive rate. In order to alleviate these issues, a lung nodule classification method based on a deep residual network is proposed. Abandoning traditional image processing methods and taking the 50-layer ResNet network structure as the initial model, the deep residual network is constructed by combining residual learning and migration learning. The proposed approach is verified by conducting experiments on the lung computed tomography (CT) images from the publicly available LIDC-IDRI database. An average accuracy of 98.23% and a false positive rate of 1.65% are obtained based on the ten-fold cross-validation method. Compared with the conventional support vector machine (SVM)-based CAD system, the accuracy of our method improved by 9.96% and the false positive rate decreased by 6.95%, while the accuracy improved by 1.75% and 2.42%, respectively, and the false positive rate decreased by 2.07% and 2.22%, respectively, in contrast to the VGG19 model and InceptionV3 convolutional neural networks. The experimental results demonstrate the effectiveness of our proposed method in lung nodule classification for CT images.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 7562-7562
Author(s):  
Pechin Lo ◽  
Matthew S. Brown ◽  
Jonathan Goldin ◽  
Eran Barnoy ◽  
Hyun J. Kim ◽  
...  

7562 Background: The National Lung Screening Trial (NLST) recently demonstrated that lung cancer screening with low-dose CT reduces mortality. Current protocols use 4–8 mm nodules as positive screens. While there are some computer-aided nodule detection (CAD) systems currently available, they are rarely used in clinical practice because they generate too many false positives and lack reliable measurement tools. The purpose of this work is to develop a new CAD system to overcome these limitations and evaluate it against an expert panel of radiologists. Methods: The CAD system developed for lung nodule detection and measurement incorporates computer vision techniques including intensity thresholding, Euclidean Distance Transformation, and watershed segmentation. Rules pertaining to volume and shape were applied to automatically discriminate between nodules and bronchovascular anatomy. CAD system performance was assessed using 108 consecutive cases from the publically available Lung Imaging Database Consortium (LIDC), in which four radiologists reviewed each case. CT slice thickness ranged from 0.6–3.0 mm. Nodules were included that were: (a) ≥ 4mm, and (b) marked by a majority of the LIDC readers, and (c) ≥ 4 x CT slice thickness (to ensure adequate spatial resolution). Results: 44 of 108 subjects had one or more nodules meeting criteria. Median CAD sensitivity per subject for these 44 cases is reported for all nodules ≥ 4mm and the subset of nodules ≥ 8mm. The false positive (FP) rate per subject is reported for all 108 cases. The overall concordance correlation coefficient (CCC) between the CAD volume of each nodule and the LIDC reference volume was measured. Conclusions: Based on clinical CT screening protocols, a CAD system has been developed with high nodule sensitivity and a much lower false positive rate than previously reported systems. Automated volume measurements show strong agreement with the reference standard, providing a comprehensive detection and assessment workflow for lung cancer screening. [Table: see text]


Author(s):  
Xiaoqi Lu ◽  
Yu Gu ◽  
Lidong Yang ◽  
Baohua Zhang ◽  
Ying Zhao ◽  
...  

Objective: False-positive nodule reduction is a crucial part of a computer-aided detection (CADe) system, which assists radiologists in accurate lung nodule detection. In this research, a novel scheme using multi-level 3D DenseNet framework is proposed to implement false-positive nodule reduction task. Methods: Multi-level 3D DenseNet models were extended to differentiate lung nodules from falsepositive nodules. First, different models were fed with 3D cubes with different sizes for encoding multi-level contextual information to meet the challenges of the large variations of lung nodules. In addition, image rotation and flipping were utilized to upsample positive samples which consisted of a positive sample set. Furthermore, the 3D DenseNets were designed to keep low-level information of nodules, as densely connected structures in DenseNet can reuse features of lung nodules and then boost feature propagation. Finally, the optimal weighted linear combination of all model scores obtained the best classification result in this research. Results: The proposed method was evaluated with LUNA16 dataset which contained 888 thin-slice CT scans. The performance was validated via 10-fold cross-validation. Both the Free-response Receiver Operating Characteristic (FROC) curve and the Competition Performance Metric (CPM) score show that the proposed scheme can achieve a satisfactory detection performance in the falsepositive reduction track of the LUNA16 challenge. Conclusion: The result shows that the proposed scheme can be significant for false-positive nodule reduction task.


Sign in / Sign up

Export Citation Format

Share Document