scholarly journals Optimal control of the two-dimensional Vlasov-Maxwell system

Author(s):  
Jörg Weber

The time evolution of a collisionless plasma is modeled by the Vlasov-Maxwell system which couples the Vlasov equation (the transport equation) with the Maxwell equations of electrodynamics. We only consider a two-dimensional version of the problem since existence of global, classical solutions of the full three-dimensional problem is not known. We add external currents to the system, in applications generated by coils, to control the plasma properly. After considering global existence of solutions to this system, differentiability of the control-to-state operator is proved. In applications, on the one hand, we want the shape of the plasma to be close to some desired shape. On the other hand, a cost term penalizing the external currents shall be as small as possible. These two aims lead to minimizing some objective function. We restrict ourselves to only such control currents that are realizable in applications. After that, we prove existence of a minimizer and deduce first order optimality conditions and the adjoint equation.

2016 ◽  
Vol 8 (6) ◽  
pp. 78 ◽  
Author(s):  
Luis Teia

This paper explains step-by-step how to construct the 3D Pythagoras' theorem by geometric manipulation of the two dimensional version. In it is shown how $x+y=z$ (1D Pythagoras' theorem) transforms into $x^2+y^2=z^2$ (2D Pythagoras' theorem) via two steps: a 90-degree rotation, and a perpendicular extrusion. Similarly, the 2D Pythagoras' theorem transforms into 3D using the same steps. Octahedrons emerge naturally during this transformation process. Hence, each of the two dimensional elements has a direct three dimensional equivalent. Just like squares govern the 2D, octahedrons are the basic elements that govern the geometry of the 3D Pythagoras' theorem. As a conclusion, the geometry of the 3D Pythagoras' theorem is a natural evolution of the 1D and 2D. This interdimensional evolution begs the question -- Is there a bigger theorem at play that encompasses all three?


2009 ◽  
Vol 19 (05) ◽  
pp. 1709-1732 ◽  
Author(s):  
B. M. BAKER ◽  
M. E. KIDWELL ◽  
R. P. KLINE ◽  
I. POPOVICI

We study the orbits, stability and coexistence of orbits in the two-dimensional dynamical system introduced by Kline and Baker to model cardiac rhythmic response to periodic stimulation — as a function of (a) kinetic parameters (two amplitudes, two rate constants) and (b) stimulus period. The original paper focused mostly on the one-dimensional version of this model (one amplitude, one rate constant), whose orbits, stability properties, and bifurcations were analyzed via the theory of skew-tent (hence unimodal) maps; the principal family of orbits were so-called "n-escalators", with n a positive integer. The two-dimensional analog (motivated by experimental results) has led to the current study of continuous, piecewise smooth maps of a polygonal planar region into itself, whose dynamical behavior includes the coexistence of stable orbits. Our principal results show (1) how the amplitude parameters control which escalators can come into existence, (2) escalator bifurcation behavior as the stimulus period is lowered — leading to a "1/n bifurcation law", and (3) the existence of basins of attraction via the coexistence of three orbits (two of them stable, one unstable) at the first (largest stimulus period) bifurcation. We consider the latter result our most important, as it is conjectured to be connected with arrhythmia.


1999 ◽  
Vol 36 (02) ◽  
pp. 102-112
Author(s):  
Michael D. A. Mackney ◽  
Carl T. F. Ross

Computational studies of hull-superstructure interaction were carried out using one-, two-and three-dimensional finite element analyses. Simplification of the original three-dimensional cases to one- and two-dimensional ones was undertaken to reduce the data preparation and computer solution times in an extensive parametric study. Both the one- and two-dimensional models were evaluated from numerical and experimental studies of the three-dimensional arrangements of hull and superstructure. One-dimensional analysis used a simple beam finite element with appropriately changed sections properties at stations where superstructures existed. Two-dimensional analysis used a four node, first order quadrilateral, isoparametric plane elasticity finite element, with a corresponding increase in the grid domain where the superstructure existed. Changes in the thickness property reflected deck stiffness. This model was essentially a multi-flanged beam with the shear webs representing the hull and superstructure sides, and the flanges representing the decks One-dimensional models consistently and uniformly underestimated the three-dimensional behaviour, but were fast to create and run. Two-dimensional models were also consistent in their assessment, and considerably closer in predicting the actual behaviours. These models took longer to create than the one-dimensional, but ran in very much less time than the refined three-dimensional finite element models Parametric insights were accomplished quickly and effectively with the simplest model and processor, but two-dimensional analyses achieved closer absolute measure of the displacement behaviours. Although only static analysis with simple loading and support conditions were presented, it is believed that similar benefits would be found for other loadings and support conditions. Other engineering components and structures may benefit from similarly judged simplification using one- and two-dimensional models to reduce the time and cost of preliminary design.


Author(s):  
Arno Koning ◽  
Johan Wagemans

Symmetry is usually easier to detect within a single object than in two objects (one-object advantage), while the reverse is true for repetition (two-objects advantage). This interaction between regularity and number of objects could reflect an intrinsic property of encoding spatial relations within and across objects or it could reflect a matching strategy. To test this, regularities between two contours (belonging to a single object or two objects) had to be detected in two experiments. Projected three-dimensional (3-D) objects rotated in depth were used to disambiguate figure-ground segmentation and to make matching based on simple translations of the two-dimensional (2-D) contours unlikely. Experiment 1 showed the expected interaction between regularity and number of objects. Experiment 2 used two-objects displays only and prevented a matching strategy by also switching the positions of the two objects. Nevertheless, symmetry was never detected more easily than repetition in these two-objects displays. We conclude that structural coding, not matching strategies, underlies the one-object advantage for symmetry and the two-objects advantage for repetition.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
A. Mohamed ◽  
A. Erdman ◽  
G. Timm

Previous biomechanical models of the penis that have attempted to simulate penile erections have either been limited to two-dimensional geometry, simplified three-dimensional geometry or made inaccurate assumptions altogether. Most models designed the shaft of the penis as a one-compartment pressurized vessel fixed at one end, when in reality it is a two-compartments pressurized vessel, in which the compartments diverge as they enter the body and are fixed at two separate points. This study began by designing simplified two-dimensional and three-dimensional models of the erect penis using Finite Element Analysis (FEA) methods with varying anatomical considerations for analyzing structural stresses, axial buckling and lateral deformation. The study then validated the results by building physical models replicating the computer models. Finally a more complex and anatomically accurate model of the penis was designed and analyzed. There was a significant difference in the peak von-Mises stress distribution between the one-compartment pressurized vessel and the more anatomically correct two-compartments pressurized vessel. Furthermore, the two-compartments diverging pressurized vessel was found to have more structural integrity when subject to external lateral forces than the one-compartment pressurized vessel. This study suggests that Mother Nature has favored an anatomy of two corporal cavernosal bodies separated by a perforated septum as opposed to one corporal body, due to better structural integrity of the tunica albuginea when subject to external forces.


2019 ◽  
Vol 16 (02) ◽  
pp. 223-243
Author(s):  
De-Xing Kong ◽  
Qi Liu ◽  
Chang-Ming Song

We investigate a dissipative hyperbolic geometry flow in two space variables for which a new nonlinear wave equation is derived. Based on an energy method, the global existence of solutions to the dissipative hyperbolic geometry flow is established. Furthermore, the scalar curvature of the metric remains uniformly bounded. Moreover, under suitable assumptions, we establish the global existence of classical solutions to the Cauchy problem, and we show that the solution and its derivative decay to zero as the time tends to infinity. In addition, the scalar curvature of the solution metric converges to the one of the flat metric at an algebraic rate.


2012 ◽  
Vol 68 (8) ◽  
pp. m229-m232
Author(s):  
Di Sun ◽  
Zhi-Hao Yan

A novel infinite one-dimensional silver cylinder, namely poly[μ-ethylenediamine-μ5-(2-sulfanidylbenzoato)-μ4-(2-sulfanidylbenzoato)-tetrasilver(I)], [Ag4(C7H4O2S)2(C2H8N2)]n, has been synthesized by one-pot reaction of equivalent molar silver nitrate and 2-mercaptobenzoic acid (H2mba) in the presence of ethylenediamine (eda). One Ag atom is located in an AgS2NO four-coordinated tetrahedral geometry, two other Ag atoms are in an AgS2O three-coordinated T-shaped geometry and the fourth Ag atom is in an AgSNO coordination environment. The two mba ligands show two different binding modes. The μ2-N:N′-eda ligand, acting as a bridge, combines with mba ligands to extend the AgIions into a one-dimensional silver cylinder incorporating abundant Ag...Ag interactions ranging from 2.9298 (11) to 3.2165 (13) Å. Interchain N—H...O hydrogen bonds extend the one-dimensional cylinder into an undulating two-dimensional sheet, which is further packed into a three-dimensional supramolecular framework by van der Waals interactions; no π–π interactions were observed in the crystal structure.


Sign in / Sign up

Export Citation Format

Share Document