scholarly journals Space of signatures as inverse limits of Carnot groups

Author(s):  
Enrico Le Donne ◽  
Roger Zuest

We formalize the notion of limit of an inverse system of metric spaces with $1$-Lipschitz projections having unbounded fibers. The construction is applied to the sequence of free Carnot groups of fixed rank $n$ and increasing step. In this case, the limit space is in correspondence with the space of signatures of rectifiable paths in $\mathbb R^n$, as introduced by Chen. Hambly-Lyons's result on the uniqueness of signature implies that this space is a geodesic metric tree. As a particular consequence we deduce that every path in $\mathbb R^n$ can be approximated by projections of some geodesics in some Carnot group of rank $n$, giving an evidence that the complexity of sub-Riemannian geodesics increases with the step.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jeffrey Bergfalk ◽  
Chris Lambie-Hanson

Abstract In 1988, Sibe Mardešić and Andrei Prasolov isolated an inverse system $\textbf {A}$ with the property that the additivity of strong homology on any class of spaces which includes the closed subsets of Euclidean space would entail that $\lim ^n\textbf {A}$ (the nth derived limit of $\textbf {A}$ ) vanishes for every $n>0$ . Since that time, the question of whether it is consistent with the $\mathsf {ZFC}$ axioms that $\lim ^n \textbf {A}=0$ for every $n>0$ has remained open. It remains possible as well that this condition in fact implies that strong homology is additive on the category of metric spaces. We show that assuming the existence of a weakly compact cardinal, it is indeed consistent with the $\mathsf {ZFC}$ axioms that $\lim ^n \textbf {A}=0$ for all $n>0$ . We show this via a finite-support iteration of Hechler forcings which is of weakly compact length. More precisely, we show that in any forcing extension by this iteration, a condition equivalent to $\lim ^n\textbf {A}=0$ will hold for each $n>0$ . This condition is of interest in its own right; namely, it is the triviality of every coherent n-dimensional family of certain specified sorts of partial functions $\mathbb {N}^2\to \mathbb {Z}$ which are indexed in turn by n-tuples of functions $f:\mathbb {N}\to \mathbb {N}$ . The triviality and coherence in question here generalise the classical and well-studied case of $n=1$ .


2013 ◽  
Vol 160 (13) ◽  
pp. 1794-1801 ◽  
Author(s):  
Olivier Olela Otafudu
Keyword(s):  

2012 ◽  
Vol 2012 (1) ◽  
pp. 234 ◽  
Author(s):  
Maryam A Alghamdi ◽  
Mohammed A Alghamdi ◽  
Naseer Shahzad

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Pengcheng Niu ◽  
Kelei Zhang

Let{X1,X2,…,Xm}be the basis of space of horizontal vector fields in a Carnot groupG=(Rn;∘) (m<n). We prove high order Fefferman-Phong type inequalities inG. As applications, we derive a prioriLp(G)estimates for the nondivergence degenerate elliptic operatorsL=-∑i,j=1maij(x)XiXj+V(x)withVMOcoefficients and a potentialVbelonging to an appropriate Stummel type class introduced in this paper. Some of our results are also new even for the usual Euclidean space.


2006 ◽  
Vol 08 (01) ◽  
pp. 1-8 ◽  
Author(s):  
MINGBAO SUN ◽  
XIAOPING YANG

For a Carnot group G of step two, we prove that H-convex functions are locally bounded from above. Therefore, H-convex functions on a Carnot group G of step two are locally Lipschitz continuous by using recent results by Magnani.


2018 ◽  
Vol 11 (4) ◽  
pp. 387-404 ◽  
Author(s):  
Hiroaki Aikawa ◽  
Anders Björn ◽  
Jana Björn ◽  
Nageswari Shanmugalingam

AbstractThe variational capacity {\operatorname{cap}_{p}} in Euclidean spaces is known to enjoy the density dichotomy at large scales, namely that for every {E\subset{\mathbb{R}}^{n}},\inf_{x\in{\mathbb{R}}^{n}}\frac{\operatorname{cap}_{p}(E\cap B(x,r),B(x,2r))}% {\operatorname{cap}_{p}(B(x,r),B(x,2r))}is either zero or tends to 1 as {r\to\infty}. We prove that this property still holds in unbounded complete geodesic metric spaces equipped with a doubling measure supporting a p-Poincaré inequality, but that it can fail in nongeodesic metric spaces and also for the Sobolev capacity in {{\mathbb{R}}^{n}}. It turns out that the shape of balls impacts the validity of the density dichotomy. Even in more general metric spaces, we construct families of sets, such as John domains, for which the density dichotomy holds. Our arguments include an exact formula for the variational capacity of superlevel sets for capacitary potentials and a quantitative approximation from inside of the variational capacity.


2015 ◽  
Vol 15 (2) ◽  
Author(s):  
Annalisa Baldi ◽  
Bruno Franchi

AbstractLet G be a free Carnot group (i.e. a connected simply connected nilpotent stratified free Lie group) of step 2. In this paper, we prove that the variational functional generated by “intrinsic” Maxwell’s equations in G is the Γ-limit of a sequence of classical (i.e. Euclidean) variational functionals associated with strongly anisotropic dielectric permittivity and magnetic permeability in the Euclidean space.


2003 ◽  
Vol 2003 (35) ◽  
pp. 2203-2220 ◽  
Author(s):  
Irina Markina

Recently, the theory of quasiregular mappings on Carnot groups has been developed intensively. Letνstand for the homogeneous dimension of a Carnot group and letmbe the index of the last vector space of the corresponding Lie algebra. We prove that the(ν−m−1)-dimensional Hausdorff measure of the image of the branch set of a quasiregular mapping on the Carnot group is positive. Some estimates of the local index of quasiregular mappings are also obtained.


2013 ◽  
Vol 1 ◽  
pp. 130-146 ◽  
Author(s):  
Fausto Ferrari ◽  
Andrea Pinamonti

Abstract In this paper, following [3], we provide some nonexistence results for semilinear equations in the the class of Carnot groups of type ★.This class, see [20], contains, in particular, all groups of step 2; like the Heisenberg group, and also Carnot groups of arbitrarly large step. Moreover, we prove some nonexistence results for semilinear equations in the Engel group, which is the simplest Carnot group that is not of type ★.


Sign in / Sign up

Export Citation Format

Share Document