scholarly journals Statistical methods for monitoring the operation of cathodic protection stations

2019 ◽  
Vol 121 ◽  
pp. 01004
Author(s):  
Tatiana Gerasina ◽  
Alexey Zarubin ◽  
Oxana Zarubina

This article is a result of the research on the methods to monitor the operation of cathodic protection stations. This study presents the experimental data analysis of the work of cathodic protection stations was carried out by the transportation company with measurements for two quarters. Statistical analysis realized on the basis of Shewhart control charts.

2020 ◽  
Vol 4 (4) ◽  
pp. 272-282
Author(s):  
Tereza Smajdorová ◽  
Darja Noskievičová

Classical parametric statistical methods are based on several basic assumptions about data (normality, independence, constant mean and variance). Unfortunately, these assumptions are not always fulfilled in practice, whether due to problems arising during manufacturing or because these properties are not typical for some processes. Either way, when we apply parametric methods to such data, whether Shewhart’s or other types of parametric control charts, it is not guaranteed that they will provide the right results. For these cases, reliable nonparametric statistical methods were developed, which are not affected by breaking assumptions about the data. Nonparametric methods try to provide suitable procedures to replace commonly used parametric statistical methods. The aim of this paper is to introduce the reader to an alternative way of evaluating the statistical stability of the process, in cases where the basic assumptions about the data are not met. First, possible deviations from the data assumptions that must be met in order to use classical Shewhart control charts were defined. Subsequently, simulations were performed to determine which nonparametric control chart was better suited for which type of data assumption violation. First, simulations were performed for the in-control process. Then simulations for an out-of-control process were performed. This is for situations with an isolated and persistent deviation. Based on the performed simulations, flow charts were created. These flow charts give the reader an overview of the possibilities of using nonparametric control charts in various situations. Based on the performed simulations and subsequent verification of the methodology on real data, it was found that nonparametric control charts are a suitable alternative to the standard Shewhart control charts in cases where the basic assumptions about the data are not met.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 107-116 ◽  
Author(s):  
M. Thomann ◽  
L. Rieger ◽  
S. Frommhold ◽  
H. Siegrist ◽  
W. Gujer

A monitoring concept for on-line sensors will be discussed which helps the WWTP staff to detect drift-, shift- and outlier effects as well as unsatisfactory calibration curves. The approach is based on the analysis of comparative measurements between the sensor and a reference method. It combines statistical analysis such as control charts and regression analysis with decision support rules. The combination of two different detection levels in the selected Shewhart control charts with additional criteria allows one to detect ‘out-of-control’ situations early with an optimized measurement effort. Beside the statistical analysis the concept supports the operator with a graphical analysis to monitor the accuracy of on-line measurements efficiently. The widely applicable monitoring concept will be illustrated with examples for an ion-sensitive NH4+- and a MLSS-sensor.


Author(s):  
VLADIMIR S. KAZANTSEV

The package of applied programs named KVAZAR has been elaborated to be used for classification, diagnostic, predicative, experimental data analysis problems. The package may be used in medicine, biology, geology, economics, engineering and some other problems. The algorithmical base of the package is the method of pattern recognition, based on the linear inequalities and committee constructions. Other algorithms are used too. The package KVAZAR is intended to be used with IBM PC AT/XT. The range of processing data is bounded by 40,000 numbers.


2014 ◽  
Vol 31 (8) ◽  
pp. 1565-1574 ◽  
Author(s):  
Alireza Faraz ◽  
Erwin M. Saniga ◽  
Cedric Heuchenne

2021 ◽  
Vol 69 ◽  
pp. 273-289
Author(s):  
Kim Duc Tran ◽  
Qurat-Ul-Ain Khaliq ◽  
Adel Ahmadi Nadi ◽  
Thi Hien Nguyen ◽  
Kim Phuc Tran

Sign in / Sign up

Export Citation Format

Share Document