scholarly journals Modeling of dendrite growth in undercooled solution sodium acetate trihydrate

2019 ◽  
Vol 128 ◽  
pp. 01023
Author(s):  
Chanchal Kumar ◽  
Aniket D. Monde ◽  
Anirban Bhattacharya ◽  
Prodyut R. Chakraborty

The sodium acetate trihydrate is commonly used as energy storage phase change material in heating pads for body or hand warmer in cold climates. The undercooled melt of sodium acetate trihydrate kept at room temperature results in an exothermic reaction when solidification seed is nucleated. In presentwork, modeling of denritic growth in an undercooled solution of sodium acetate trihydrate has been carried out. The enthalpy method has been used to compute solid-liquid interface growing in undercooled melt. The interface temperature, concentration and grain growth have been modeled considering curvatureeffect and solutal undercooling. A 2-D computational grid of square control volumes has been used and discreatized governing equations were solved explicitly. The crystal anisotropy was imposed explicitly. The results are validated using experimental data.

2021 ◽  
Vol 11 (8) ◽  
pp. 3379
Author(s):  
Hyung Ju Lee ◽  
Chan Ho Jeong ◽  
Dae Yun Kim ◽  
Chang Kyoung Choi ◽  
Seong Hyuk Lee

The present study aims to measure the solid–liquid interface temperature of an evaporating droplet on a heated surface using a thermoresponsive polymer. Poly(N-isopropylacrylamide) (pNIPAM) was used owing to its sensitive optical and mechanical properties to the temperature. We also measured the refractive index variation of the pNIPAM solution by using the surface plasmon resonance imaging (SPRi). In particular, the present study proposed a new method to measure the solid–liquid interface temperature using the correlation among reflectance, refractive index, and temperature. It was found that the reflectance of a pNIPAM solution decreased after the droplet deposition. The solid–liquid interface temperature, estimated from the reflectance, showed a lower value at the center of the droplet, and it gradually increased along the radial direction. The lowest temperature at the contact line region is present because of the maximum evaporative cooling. Moreover, the solid–liquid interface temperature deviation increased with the surface temperature, which means solid–liquid interface temperature should be considered at high temperature to predict the evaporation flux of the droplet accurately.


2021 ◽  
Vol 40 ◽  
pp. 102780
Author(s):  
Gang Wang ◽  
Chao Xu ◽  
Weiqiang Kong ◽  
Gerald Englmair ◽  
Jianhua Fan ◽  
...  

1989 ◽  
Vol 157 ◽  
Author(s):  
P.A. Stolk ◽  
A. Polman ◽  
W.C. Sinke

ABSTRACTPulsed laser irradiation is used to induce epitaxial explosive crystallization of amorphous silicon layers buried in a (100) oriented crystalline matrix. This process is mediated by a self-propagating liquid layer. Time-resolved determination of the crystallization speed combined with numerical calculation of the interface temperature shows that freezing in silicon saturates at 16 m/s for large undercooling (> 130 K). A comparison between data and different models for melting and freezing indicates that the crystallization behavior at large undercooling can be described correctly if the rate-limiting factor is assumed to be diffusion in liquid Si at the solid/liquid interface.


Sign in / Sign up

Export Citation Format

Share Document