scholarly journals Synchronous asynchronous encounter analysis of runoff between reservoirs based on Copula function

2019 ◽  
Vol 81 ◽  
pp. 01021
Author(s):  
Weidong Zhao ◽  
Jing Zhang

Based on goodness-of-fit test on Copula function, we got the best fitted joint distribution function of runoff between D and H reservoirs. Then we analyzed the synchronous asynchronous encounter probability of runoff. The synchronous encounter probability of runoff was 72.46%, while the asynchronous of dryness-wetness or wetness-dryness encounter probability was only 1.06% between D and H reservoirs. The results showed that the runoff conditions were not conducive to the runoff compensation. In order to satisfy the target of water supply, we should also study the reservoir optimization operation, store water in advance and exploit the reservoir regulating potentialities on flood water resources.

Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 64 ◽  
Author(s):  
Guilin Liu ◽  
Baiyu Chen ◽  
Song Jiang ◽  
Hanliang Fu ◽  
Liping Wang ◽  
...  

Wave height and wave period are important oceanic environmental factors that are used to describe the randomness of a wave. Within the field of ocean engineering, the calculation of design wave height is of great significance. In this paper, a periodic maximum entropy distribution function with four undetermined parameters is derived by means of coordinate transformation and solving conditional variational problems. A double entropy joint distribution function of wave height and wave period is also derived. The function is derived from the maximum entropy wave height function and the maximum entropy periodic function, with the help of structures of the Copula function. The double entropy joint distribution function of wave height and wave period is not limited by weak nonlinearity, nor by normal stochastic process and narrow spectrum. Besides, it can fit the observed data more carefully and be more widely applicable to nonlinear waves in various cases, owing to the many undetermined parameters it contains. The engineering cases show that the recurrence level derived from the double entropy joint distribution function is higher than that from the extreme value distribution using the single variables of wave height or wave period. It is also higher than that from the traditional joint distribution function of wave height and wave period.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenxiang Jiang ◽  
Jinping He

The traditional methods of diagnosing dam service status are always suitable for single measuring point. These methods also reflect the local status of dams without merging multisource data effectively, which is not suitable for diagnosing overall service. This study proposes a new method involving multiple points to diagnose dam service status based on joint distribution function. The function, including monitoring data of multiple points, can be established with t-copula function. Therefore, the possibility, which is an important fusing value in different measuring combinations, can be calculated, and the corresponding diagnosing criterion is established with typical small probability theory. Engineering case study indicates that the fusion diagnosis method can be conducted in real time and the abnormal point can be detected, thereby providing a new early warning method for engineering safety.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
T. Mesbahzadeh ◽  
M. M. Miglietta ◽  
M. Mirakbari ◽  
F. Soleimani Sardoo ◽  
M. Abdolhoseini

Precipitation and temperature are very important climatic parameters as their changes may affect life conditions. Therefore, predicting temporal trends of precipitation and temperature is very useful for societal and urban planning. In this research, in order to study the future trends in precipitation and temperature, we have applied scenarios of the fifth assessment report of IPCC. The results suggest that both parameters will be increasing in the studied area (Iran) in future. Since there is interdependence between these two climatic parameters, the independent analysis of the two fields will generate errors in the interpretation of model simulations. Therefore, in this study, copula theory was used for joint modeling of precipitation and temperature under climate change scenarios. By the joint distribution, we can find the structure of interdependence of precipitation and temperature in current and future under climate change conditions, which can assist in the risk assessment of extreme hydrological and meteorological events. Based on the results of goodness of fit test, the Frank copula function was selected for modeling of recorded and constructed data under RCP2.6 scenario and the Gaussian copula function was used for joint modeling of the constructed data under the RCP4.5 and RCP8.5 scenarios.


Author(s):  
Fang Wan ◽  
Lingfeng Xiao ◽  
Qihui Chai ◽  
Li Li

Abstract With the rapid development of economy and society, the contradiction between supply and demand of water resources is increasing. Efficient utilization and allocation of limited water resources are one of the main means to solve the above contradictions. In this paper, the multidimensional joint distribution of natural streamflow series in reservoirs is constructed by introducing the mixed Copula function, and the probability of wet and dry encounters between natural streamflow is analyzed. Luan River is located in the northeastern part of Hebei Province, China, taking the group of Panjiakou Reservoir, Douhe Reservoir and Yuqiao Reservoir in the downstream of Luan River Basin as an example, the probabilities of synchronous and asynchronous abundance and depletion of inflow from the reservoirs are calculated. The results show that the probability of natural streamflow series between reservoirs is 61.14% for wetness and dryness asynchronous, which has certain mutual compensation ability. Therefore, it is necessary to minimize the risk of water supply security in Tianjin, Tangshan and other cities, and strengthen the optimal joint water supply scheduling of reservoirs. The research results are reasonable and reliable, which can provide reference for water supply operation of other basins.


FLORESTA ◽  
2011 ◽  
Vol 41 (2) ◽  
Author(s):  
William Thomaz Wendling ◽  
Dartagnan Baggio Emerenciano ◽  
Roberto Tuyoshi Hosokawa

Desenvolve-se uma metodologia traçada por um roteiro em algoritmo factível e amigável para efetivação em planilhas eletrônicas, reconhecidas como uma interface popular para cálculos. Busca-se, assim, apresentar uma ferramenta útil para alunos de graduação e recém-graduados em engenharia florestal, ou engenheiros mais experientes que ainda não dominem a técnica, para ajuste de um modelo de função densidade de probabilidade, com o objetivo de descrever a estrutura da distribuição diamétrica de populações florestais. O modelo adotado é o da função de Weibull, e o método de ajuste é o do percentis, com simulações comparadas por teste de aderência de Kolmogorov-Smirnov. A eficiência do método apresentado é testada por comparação a outro método alternativo.Palavras-chave:  Manejo florestal; florestas - modelos matemáticos; florestas - simulação por computador. AbstractWeibull diameter distribution function adjusts for electronic spreadsheet. This research develops a methodology based on easy and friendly algorithm for spreadsheets, a well known interface for calculus. It aims to present a helpful tool for forestry students, as well as for newly or experienced engineers who haven’t already known adjustment techniques for a density function model of probability, which is useful into diametric distribution structure descriptions of forest population. It has Weibull’s function as main model, percentile as adjustment method, and comparing simulations by Kolmogorov-Smirnov goodness-of-fit test. Efficiency of the presented method was tested by comparison to another method.Keywords: Forest management; forest - mathematical models; forest - computer simulator.


2016 ◽  
Vol 61 (3) ◽  
pp. 489-496
Author(s):  
Aleksander Cianciara

Abstract The paper presents the results of research aimed at verifying the hypothesis that the Weibull distribution is an appropriate statistical distribution model of microseismicity emission characteristics, namely: energy of phenomena and inter-event time. It is understood that the emission under consideration is induced by the natural rock mass fracturing. Because the recorded emission contain noise, therefore, it is subjected to an appropriate filtering. The study has been conducted using the method of statistical verification of null hypothesis that the Weibull distribution fits the empirical cumulative distribution function. As the model describing the cumulative distribution function is given in an analytical form, its verification may be performed using the Kolmogorov-Smirnov goodness-of-fit test. Interpretations by means of probabilistic methods require specifying the correct model describing the statistical distribution of data. Because in these methods measurement data are not used directly, but their statistical distributions, e.g., in the method based on the hazard analysis, or in that that uses maximum value statistics.


Sign in / Sign up

Export Citation Format

Share Document