scholarly journals Study on the streamflow compensation characteristics of reservoirs in Luanhe River Basin based on Copula function

Author(s):  
Fang Wan ◽  
Lingfeng Xiao ◽  
Qihui Chai ◽  
Li Li

Abstract With the rapid development of economy and society, the contradiction between supply and demand of water resources is increasing. Efficient utilization and allocation of limited water resources are one of the main means to solve the above contradictions. In this paper, the multidimensional joint distribution of natural streamflow series in reservoirs is constructed by introducing the mixed Copula function, and the probability of wet and dry encounters between natural streamflow is analyzed. Luan River is located in the northeastern part of Hebei Province, China, taking the group of Panjiakou Reservoir, Douhe Reservoir and Yuqiao Reservoir in the downstream of Luan River Basin as an example, the probabilities of synchronous and asynchronous abundance and depletion of inflow from the reservoirs are calculated. The results show that the probability of natural streamflow series between reservoirs is 61.14% for wetness and dryness asynchronous, which has certain mutual compensation ability. Therefore, it is necessary to minimize the risk of water supply security in Tianjin, Tangshan and other cities, and strengthen the optimal joint water supply scheduling of reservoirs. The research results are reasonable and reliable, which can provide reference for water supply operation of other basins.

Author(s):  
Hang Li ◽  
Xiao-Ning Qu ◽  
Jie Tao ◽  
Chang-Hong Hu ◽  
Qi-Ting Zuo

Abstract China is actively exploring water resources management considering ecological priorities. The Shaying River Basin (Henan Section) serves as an important grain production base in China. However, conflicts for water between humans and the environment are becoming increasingly prominent. The present study analyzed the optimal allocation of water while considering ecological priorities in the Shaying River Basin (Henan Section). The ecological water demand was calculated by the Tennant and the representative station methods; then, based on the predicted water supply and demand in 2030, an optimal allocation model was established, giving priority to meeting ecological objectives while including social and comprehensive economic benefit objectives. After solving the model, the optimal results of three established schemes were obtained. This revealed that scheme 1 and scheme 2 failed to satisfy the water demand of the study area in 2030 by only the current conditions and strengthening water conservation, respectively. Scheme 3 was the best scheme, which could balance the water supply and demand by adding new water supply based on strengthening water conservation and maximizing the benefits. Therefore, the actual water allocation in 2030 is forecast to be 7.514 billion (7.514 × 109) m3. This study could help basin water management departments deal with water use and supply.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247604
Author(s):  
Min An ◽  
Lijuan Fan ◽  
Jin Huang ◽  
Wenjing Yang ◽  
Hailin Wu ◽  
...  

Climate change, population growth, the development of industrialization and urbanization are increasing the demand for water resources, but the water pollution is reducing the limited water supply. In recent years, the gap between water supply and demand which shows water scarcity situation is becoming more serious. Clear knowing this gap and its main driving factors could help us to put forward water protection measures correctly. We take the data of Huaihe River Basin from 2001 to 2016 as an example and use ecological water footprint to describe the demand, with the water carrying capacity representing the supply. We analyze the water supply-demand situation of Huaihe River Basin and its five provinces from footprint view in time and space. Then we apply the Logarithmic Mean Divisia Index model to analyze the driving factors of the ecological water footprint. The results show that: (1) the supply and demand balance of Huaihe River Basin was only achieved in year 2003 and 2005. There is also a large difference between Jiangsu province and other provinces in Huaihe River basin, most years in Jiangsu province per capital ecological footprint of water is more than 1 hm2/person except the years of 2003, 2015, and 2016. But other provinces are all less than 1 hm2/person. (2) Through the decomposition of water demand drivers, we concluded that economic development is the most important factor, with an annual contribution of more than 60%. Our study provides countermeasures and suggestions for the management and optimal allocation of water resources in Huaihe River Basin, and also provides reference for the formulation of water-saving policies in the world.


2003 ◽  
Vol 47 (7-8) ◽  
pp. 81-86 ◽  
Author(s):  
H. Bode ◽  
P. Evers ◽  
D.R. Albrecht

The Ruhr, with an average flow of 80.5 m3/s at its mouth, is a comparatively small tributary to the Rhine River that has to perform an important task: to secure the water supply of more than 5 million people and of the industry in the densely populated region north of the river. The complex water management system and network applied by the Ruhrverband in the natural Ruhr River Basin has been developed step by step, over decades since 1913. And from the beginning, its major goal has been to achieve optimal conditions for the people living in the region. For this purpose, a functional water supply and wastewater disposal infrastructure has been built up. The development of these structures required and still requires multi-dimensional planning and performance. Since the river serves as receiving water and at the same time as a source of drinking water, the above-standard efforts of Ruhrverband for cleaner water also help to conserve nature and wildlife. Ruhrverband has summed up its environmental awareness in the slogan: “For the people and for the environment”. This basic water philosophy, successfully applied to the Ruhr for more than 80 years, will be continued in accordance with the new European Water Framework Directive, enacted in 2000, which demands integrated water resources management in natural river basins, by including the good ecological status of surface waterbodies as an additional goal.


2020 ◽  
Vol 12 (10) ◽  
pp. 4254
Author(s):  
Yutong Tian ◽  
Chunhui Li ◽  
Yujun Yi ◽  
Xuan Wang ◽  
Anping Shu

With the development of industrial and agricultural production and the social economy, the demand for water resources has gradually increased. In this paper, based on the principles of system dynamics, a sustainable water resources utilization model with coupled water quality and quantity is established using STELLA software to assess the sustainable use of water resources. The model includes two modules: a water supply module and a water quality module. The water supply module includes four sub-systems: economy, population, water supply, and water demand. The water quality module consists of an environmental sub-system. The model is suitable for Tianjin, where water resources are scarce. Calibration is performed using data from 2013–2016, and verification is performed using data from 2017. The simulation results are good. In order to compare the sustainable use of water resources in different development scenarios in Tianjin for 2025, a sensitivity analysis is performed for each variable, and four decision variables are selected to establish four water resources use scenarios (Scenarios 1–4). The results show that, compared with scenario 1, water shortages in scenarios 2 and 3 are delayed. Scenario 4, with stable economic growth and environmental consideration, can effectively resolve the contradiction between water supply and demand in the future, and is more conducive to the improvement of water quality. Finally, based on the above research, measures to solve water resources problems are proposed, in order to provide a reference for the sustainable use of water resources and optimization of water resources allocation in Tianjin.


2021 ◽  
Vol 40 (1) ◽  
pp. 381-401
Author(s):  
Weiwei Wang ◽  
Haiwei Zhou ◽  
Lidan Guo

The emergency supply of transboundary water resources is a prominent problem affecting the social and economic development of basin countries. However, current water supply decisions on transboundary water resources may ignore the psychological perception of multi-stakeholders, and the evolution of emergencies increases the uncertainty of decision making. Both factors would lead to the low acceptance of water-related decisions. Utility satisfaction, perceived losses, and quantity satisfaction were selected in this paper to identify the perceived satisfaction of upstream governments, downstream governments, and the public, respectively, over multiple decision-making stages. A modeling framework combining prospect theory and the multi-stage multi-objective programming methodology was then developed to measure the perceived satisfaction of different stakeholders in a watershed under emergency. A two-stage NSGA-II and TOPSIS based approach was adopted to find the optimal compromise solution to solve the model. The framework was applied in the Lancang–Mekong River basin to provide suggestions to decision makers. Upstream decision makers must choose a moderate proportional fairness degree when making emergency decisions to maximize the perceived satisfaction of all stakeholders. Meanwhile, the perceived loss of downstream countries with low water demand should be considered first in the formulation of emergency water supply plans. Furthermore, although water supply from upstream countries can improve perceived water quantity satisfaction of downstream publics, additional actions must still be taken to change the traditional concepts of the public.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1650 ◽  
Author(s):  
Gao ◽  
Zhang ◽  
Zhang ◽  
Li ◽  
Yang ◽  
...  

The Malian River Basin is the Longdong grain elevator and a new oil and energy base of East Gansu Province. Limited water resources programming utilization is a key for the development of the socio-economic and energy industry, as well as the improvement of the ecological environment. An analytical framework for assessing socioeconomic development, rational allocation of water resources, and guiding policy development is proposed in this study. A decision tree method was used in the risk analysis and was improved by introducing the expert advisory probabilistic method into the sensitivity analysis to reduce cognitive bias. A large-system multi-objective model was developed to solve the problem of the rational allocation of available water resources and for benefit maximization among water users. The Non-dominated Sorting Genetic Algorithm-Ⅱ (NSGA-II) method was used to generate a solution. The water supply amount within the basin was 8.69 × 108 m3 and the water shortage rate was 15.90%. The optimization model method had better distribution results than the weights method without new water supply. Through the model method results, the water saving potential was found and the related policies were proposed. The framework and methods can further provide a reference for both the planning of water resources and the formulation of regulatory policies and will greatly alleviate water crises in semi-arid areas.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1085 ◽  
Author(s):  
Boyang Sun ◽  
Xiaohua Yang

In order to comprehensively evaluate the water resources carrying capacity in Xiong’an New Area, a system dynamics (SD) model was established to evaluate the regional water resources carrying capacity, for which several scenarios were designed: the original development scenario, the accelerated industrialization scenario, the environmental governance scenario, and the optimization development scenario. The results show that, compared with the original development scenario, the water resources carrying capacity in Xiong’an New Area can be improved in other scenarios, but a water supply and demand gap will be generated due to the lack of groundwater overdraft and a water transfer project. In 2026, under the accelerated industrialization scenario, the population carrying capacity will be 2.652 million, and the water supply and demand gap will be 1.13 × 108 m3; under the environmental governance scenario, the population carrying capacity will be 2.36 million, and the water supply and demand gap will be 0.44 × 108 m3; under the optimal development scenario, the population carrying capacity will be 2.654 million, and since the supply of water resources will be greater than the demand, there will not be a gap between supply and demand, making it the most feasible scenario to effectively alleviate the tension between industry restructuring, environmental management, and water resources development and utilization. The findings of this study can provide reference and decision support for optimizing regional water resources allocation and enhancing water resources carrying capacity in Xiong’an New Area.


2019 ◽  
Vol 137 (3-4) ◽  
pp. 2393-2408 ◽  
Author(s):  
Jianzhu Li ◽  
Zhenxing Gao ◽  
Yuangang Guo ◽  
Ting Zhang ◽  
Peizhen Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document