scholarly journals Optimal configuration of energy storage system in multi-station fusion mode

2021 ◽  
Vol 256 ◽  
pp. 02002
Author(s):  
Zhendong Du ◽  
Guosheng Jin ◽  
Yu Fang ◽  
Chenyin Yu ◽  
Yupeng Hu ◽  
...  

Multi-station fusion mode (MSF) generally includes energy storage system, data center and electric vehicle charging station. It can improve the utilization rate of land and power distribution resources of urban substations. This paper studies configuration of ESS in the MSF model, aiming at reducing total cost. Firstly, an AC-DC system of MSF model is established. Then, aiming at economy, the optimal configuration model of ESS is established. Finally, the effectiveness of the model is verified by a practical example, and the MATLAB toolbox YALMIP with the CPLEX solver is used to conduct the ESS planning.

2021 ◽  
Vol 12 (3) ◽  
pp. 154
Author(s):  
Yu Zhang ◽  
Kai Li ◽  
Shumei Cui ◽  
Yutian Sun

To address the power distribution problem that occurs in hybrid energy storage systems (HESSs) in electric vehicles, a fuzzy control distribution method is proposed in this paper, taking the vehicle demand power; supercapacitor power, PSC;; and lithium battery power, Pbat, as the inputs and the power distribution factor of the supercapacitor as the output to control the power distribution of the composite energy storage system, in addition to dividing the whole working condition into three time scales, namely, long, medium and short. In this study, we conducted a comprehensive analysis and comparison with typical control methods regarding the energy storage element output power, battery state of charge (SOC) change, energy flow diagram and power frequency. The simulation experiment results show that the proposed strategy is more effective in reducing the peak output power of the power battery, improving the effective power utilization rate of HESS and the effective energy utilization rate. In order to further verify the effectiveness of the control strategy, a pure electric bus power system test bench was built based on similar principles, and a representative time period under the driving conditions of the China city bus (CHTC-B) was selected, involving an acceleration process from 30 to 48 s (process 1), a uniform speed process from 636 to 671 s (process 2) and a regenerative braking process from 1290 to 1304 s (process 3), further verifying the effectiveness and feasibility of the proposed control strategy.


Author(s):  
Xiang Zhou ◽  
Mehdi Jafari ◽  
Ossama Abdelkhalik ◽  
Umesh A. Korde ◽  
Lucia Gauchia

This paper addresses the sizing problem of an energy storage system (ESS) while considering statistical tolerance for a two-body wave energy converter (WEC), which is designed to support ocean sensing applications with sustained power for long-term functioning. The power is extracted by assuming ideal power take-off (PTO) based upon historical ocean data record (significant wave height and period of wave swell) from Martha’s Vineyard Coastal Observatory. A gamma distribution is applied to generate the extracted power distribution of each sample in the time-series using Bayesian methodology. The means and standard deviation of the extracted power distributions compose the statistical annual power time-series. Finally, the required capacities for the ESS sizing are estimated and discussed while considering both ground truth values and statistical values.


Sign in / Sign up

Export Citation Format

Share Document