scholarly journals Remediation of Mariculture Sediment by Sediment Microbial Fuel Cell

2021 ◽  
Vol 261 ◽  
pp. 04037
Author(s):  
Nannan Zhao

To investigate the removal effect of pollutants in mariculture sediment by sediment microbial fuel cell (SMFC) and its power generation capacity, the effects of external resistance, cathode pH and cathode dissolved oxygen concentration (DO) on the SMFC system were investigated. The results showed that the optimal parameters for SMFC were as follows: external resistance = 1500 Ω, pH = 8.5 and DO = 5 mg·L-1. In these situations, the power generation performance and organic degradation effect were both the best. The maximum output voltages were 585, 606, and 587 mV, respectively; the removal rates of COD in sediment were 75.51%, 84.21% and 86.63%, respectively; and the removal rates of ammonia nitrogen in sediment were 80.34%, 98.91% and 90.24%, respectively. The SMFC system had a certain degradation ability to pollutants such as COD and ammonia nitrogen in the sediment of the marine aquaculture areas, which had a broad application prospect.

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1383 ◽  
Author(s):  
Liping Fan ◽  
Junyi Shi ◽  
Tian Gao

Proton exchange membrane is an important factor affecting the power generation capacity and water purification effect of microbial fuel cells. The performance of microbial fuel cells can be improved by modifying the proton exchange membrane by some suitable method. Microbial fuel cells with membranes modified by SiO2/PVDF (polyvinylidene difluoride), sulfonated PVDF and polymerized MMA (methyl methacrylate) electrolyte were tested and their power generation capacity and water purification effect were compared. The experimental results show that the three membrane modification methods can improve the power generation capacity and water purification effect of microbial fuel cells to some extent. Among them, the microbial fuel cell with the polymerized MMA modified membrane showed the best performance, in which the output voltage was 39.52 mV, and the electricity production current density was 18.82 mA/m2, which was 2224% higher than that of microbial fuel cell with the conventional Nafion membrane; and the COD (chemical oxygen demand) removal rate was 54.8%, which was 72.9% higher than that of microbial fuel cell with the conventional Nafion membrane. Modifying the membrane with the polymerized MMA is a very effective way to improve the performance of microbial fuel cells.


2021 ◽  
Vol 269 ◽  
pp. 01002
Author(s):  
Li Wang ◽  
Jiafeng Fu ◽  
Wenlei Wang ◽  
Yutong Song ◽  
Yan Li

This work explores the effect of the ammonia concentration on the wetland synthesis of microbial fuel cell (MFC) and on the production and the efficiency of sewage purification. Four ammonia concentrations from 1 to 30 mg/L have been selected. Under the fixed condition of a chemical oxygen demand (COD) concentration of 200 mg/L, a constructed wetland microbial fuel cell (CW-MFC) could be built. The results show that by selecting the optimum ammonia concentration the production of the CW-MFC could be promoted; a higher ammonia concentration (>20 mg/L) is found to inhibit the production activity of CW-MFC. In the optimum conditions, Cathode and anode thickness is 10 cm, the ammonia concentration is 10 mg/L, the COD concentration of 200 mg/L, the maximum power density of the battery is 13.6 W/m3, the corresponding current density is 148.6 A/m3 and the battery internal resistance is 270 Ω. At the ammonia nitrogen concentration of 10 mg/L, the removal rates of ammonia nitrogen and COD were up to 89.7% and 98.47% respectively. As the ammonia nitrogen concentration increased to 30 mg/L, the ammonia nitrogen and COD removal rates decreased to 74.6% and 90.69% respectively. That is, when the ammonia nitrogen concentration is 10 mg/L, CW-MFC can exhibit the best performance.


2017 ◽  
Vol 17 (1) ◽  
pp. 558-563 ◽  
Author(s):  
C Karthikeyan ◽  
Y Sathishkumar ◽  
Yang Soo Lee ◽  
Ae Rhan Kim ◽  
Dong Jin Yoo ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (34) ◽  
pp. 18800-18813 ◽  
Author(s):  
Syed Zaghum Abbas ◽  
Mohd Rafatullah ◽  
Norli Ismail ◽  
Farah R. Shakoori

Novel laboratory-designed aerated and non-aerated sediment microbial fuel cell (SMFC) models were constructed for power generation and heavy metal bioremediation.


Sign in / Sign up

Export Citation Format

Share Document