scholarly journals Finite frequency model reduction for 2-D fuzzy systems in FM model

2021 ◽  
Vol 297 ◽  
pp. 01035
Author(s):  
Rachid Naoual ◽  
Abderrahim El-Amrani ◽  
Ismail Boumhidi

This paper deals with the problem of H∞ model reduction for two-dimensional (2D) discrete Takagi-Sugeno (T-S) fuzzy systems described by Fornasini-Marchesini local state-space (FM LSS) models, over finite frequency (FF) domain. New design conditions guaranteeing the FF H∞ model reduction are established in terms of Linear Matrix Inequalities (LMIs). To highlight the effectiveness of the proposed H∞ model reduction design, a numerical example is given.

2016 ◽  
Vol 24 (6) ◽  
pp. 1464-1474 ◽  
Author(s):  
Da-Wei Ding ◽  
Xiao-Jian Li ◽  
Xin Du ◽  
Xiangpeng Xie

Author(s):  
Miloud Koumir ◽  
Abderrahim El-Amrani ◽  
Ismail Boumhidi

<p>This paper is concerned with the problem of model reduction design for continuous systems in Takagi-Sugeno fuzzy model. Through the defined FF H∞ gain performance, sufficient conditions are derived to design model reduction and to assure the fuzzy error system to be asymptotically stable with a FF H∞ gain performance index. The explicit conditions of fuzzy model reduction are developed by solving linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.</p>


2015 ◽  
Vol 764-765 ◽  
pp. 624-628 ◽  
Author(s):  
Shun Hung Tsai ◽  
Siou An Jian

In this paper, the robust H∞ stabilization problem for Takagi-Sugeno fuzzy control systemswith state and input delays is explored. Based on a Lyapunov-Krasoviskii function, the delaydependentstabilization conditions are proposed in terms of linear matrix inequalities (LMIs) to guaranteethe asymptotic stabilization of time-delay Takagi-Sugeno fuzzy systems with disturbance input.Finally, a numerical example is illustrated to demonstrate the feasibility and effectiveness of the proposed stabilization.


2018 ◽  
Vol 28 (02) ◽  
pp. 1950023 ◽  
Author(s):  
Redouane Chaibi ◽  
Ismail Er Rachid ◽  
El Houssaine Tissir ◽  
Abdelaziz Hmamed

This paper is concerned with finite-frequency static output feedback (SOF) [Formula: see text] control for a class of continuous-time Takagi–Sugeno (T–S) fuzzy systems. With the aid of the generalized Kalman–Yakubovich–Popov (GKYP) lemma, sufficient conditions for the existence of the finite-frequency SOF [Formula: see text] control are presented. The bilinear matrix inequalities are converted to a set of linear matrix inequalities, with the aid of some special derivations. Two practical examples are given to demonstrate the effectiveness of the proposed method.


2021 ◽  
Vol 297 ◽  
pp. 01036
Author(s):  
Ben Meziane Khaddouj ◽  
Abderrahim El-Amrani ◽  
Ismail Boumhidi

This paper considers the problem of filter design for two-dimensional (2D) discrete-time non-linear systems in Takagi-Sugeno (T-S) fuzzy mode. The problem to be solved in the paper is to find a H∞ filter model such that the filtering error system is asymptotically stable. A numerical example is employed to illustrate the validity of the proposed methods.


Author(s):  
Rim Mrani Alaoui ◽  
Abderrahim El-Amrani

The work treats the filter H∞ finite frequency (FF) in Takagi-Sugeno (T-S) two dimensional (2-D) systems described by Fornasini-Marchesini local state-space (FM LSS)models. The goal of this work is to find an FF H∞ T-S fuzzy filter model design in such a way that the error system is stable and has a reduced FF H∞ performance over FF area swith noise is established as aprerequisite. Via the use of the generalized Kalman Yakubovich Popov (gKYP) lemma, Lyapunov functions approach, Finsler’s lemma, and parameterize slack matrices, new design conditions guaranteeing the FF H∞ T-S fuzzy filter method of FM LSS models are developed by solving linear matrix inequalities (LMIs). At last, the simulation results are provided to show the effectiveness and the validity of the proposed FF T-S fuzzy of FM LSS models strategy by a practical application has been made.


2000 ◽  
Author(s):  
Kiriakos Kiriakidis

Abstract Unconventional nonlinear models such as nonlinear ARMAX, Takagi-Sugeno fuzzy models, global linearizations, and linear hybrid systems are, at the highest level of abstraction, a sort of quasi-linear models, namely, Polytopic Linear Differential Inclusions (PLDIs). At present, quadratic stability has enabled, mainly via linear matrix inequalities, the analysis and design of a nonlinear system from the vertex matrices of its PLDI model. Proving stability by a globally quadratic Lyapunov function, however, entails conservatism. This paper proposes a less conservative framework by using piecewise-quadratic generalized Lyapunov functions. Further manipulation of the problem within such framework yields a set of bilinear rather than linear matrix inequalities.


Sign in / Sign up

Export Citation Format

Share Document