scholarly journals Refining the Galerkin method error estimation for parabolic type problem with a boundary condition

2021 ◽  
Vol 304 ◽  
pp. 03019
Author(s):  
Alisher Mamatov ◽  
Xusanboy Narjigitov ◽  
Dilshod Turdibayev ◽  
Jamshidbek Rakhmanov

The article considers a parabolic-type boundary value problem with a divergent principal part, when the boundary condition contains the time derivative of the required function: { ut−d/dxiai(x,t,u,∇u)+a(x,t,u,∇u)=0,a0ut+ai(x,t,u,∇u)cos(v,xi)=g(x,t,u,),(x,t)∈St, u(x,0)= u0(x), x∈Ω Such nonclassical problems with boundary conditions containing the time derivative of the desired function arise in the study of a number of applied problems, for example, when the surface of a body, whose temperature is the same at all its points, is washed off by a well-mixed liquid, or when a homogeneous isotropic body is placed in the inductor of an induction furnace and an electro-magnetic wave falls on its surface. Such problems have been little studied, therefore, the study of problems of parabolic type, when the boundary condition contains the time derivative of the desired function, is relevant. In this paper, the definition of a generalized solution of the considered problem in the space H˜1,1(QT) is given. This problem is solved by the approximate Bubnov-Galerkin method. The coordinate system is chosen from the space H1(Ω). To determine the coefficients of the approximate solution, the parabolic problem is reduced to a system of ordinary differential equations. The aim of the study is to obtain conditions under which the estimate of the error of the approximate solution in the norm H1(Ω) has order O(hk−1) The paper first explores the auxiliary elliptic problem. When the condition of the ellipticity of the problem is satisfied, inequalities are proposed for the difference of the generalized solution of the considered parabolic problem with a divergent principal part, when the boundary condition contains the time derivative of the desired function and the solution of the auxiliary elliptic problem. Using these estimates, as well as under additional conditions for the coefficients and the function included in the problem under consideration, estimates of the error of the approximate solution of the Bubnov-Galerkin method in the norm H1(Ω) of order O(hk−1) for the considered nonclassical parabolic problem with divergent principal part, when the boundary condition contains the time derivative of the desired function.

1979 ◽  
Vol 44 (10) ◽  
pp. 2908-2914 ◽  
Author(s):  
Ondřej Wein

The problem of the oscillatory flow of pseudoplastic liquid in vicinity of the infinitely long horizontal plane is formulated in stresses. For Re i.e. for conditions of oscillatory boundary layer the problem is solved approximately by the Galerkin method.


2005 ◽  
Vol 2005 (4) ◽  
pp. 523-536
Author(s):  
Yubin Yan

A smoothing property in multistep backward difference method for a linear parabolic problem in Hilbert space has been proved, where the operator is selfadjoint, positive definite with compact inverse. By using the solutions computed by a multistep backward difference method for the parabolic problem, we introduce an approximation scheme for time derivative. The nonsmooth data error estimate for the approximation of time derivative has been obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shazalina Mat Zin ◽  
Ahmad Abd Majid ◽  
Ahmad Izani Md. Ismail ◽  
Muhammad Abbas

The generalized nonlinear Klien-Gordon equation is important in quantum mechanics and related fields. In this paper, a semi-implicit approach based on hybrid cubic B-spline is presented for the approximate solution of the nonlinear Klien-Gordon equation. The usual finite difference approach is used to discretize the time derivative while hybrid cubic B-spline is applied as an interpolating function in the space dimension. The results of applications to several test problems indicate good agreement with known solutions.


Sign in / Sign up

Export Citation Format

Share Document