scholarly journals Application of Hybrid Cubic B-Spline Collocation Approach for Solving a Generalized Nonlinear Klien-Gordon Equation

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shazalina Mat Zin ◽  
Ahmad Abd Majid ◽  
Ahmad Izani Md. Ismail ◽  
Muhammad Abbas

The generalized nonlinear Klien-Gordon equation is important in quantum mechanics and related fields. In this paper, a semi-implicit approach based on hybrid cubic B-spline is presented for the approximate solution of the nonlinear Klien-Gordon equation. The usual finite difference approach is used to discretize the time derivative while hybrid cubic B-spline is applied as an interpolating function in the space dimension. The results of applications to several test problems indicate good agreement with known solutions.

2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Imtiaz Wasim ◽  
Muhammad Abbas ◽  
Muhammad Amin

In this study, we introduce a new numerical technique for solving nonlinear generalized Burgers-Fisher and Burgers-Huxley equations using hybrid B-spline collocation method. This technique is based on usual finite difference scheme and Crank-Nicolson method which are used to discretize the time derivative and spatial derivatives, respectively. Furthermore, hybrid B-spline function is utilized as interpolating functions in spatial dimension. The scheme is verified unconditionally stable using the Von Neumann (Fourier) method. Several test problems are considered to check the accuracy of the proposed scheme. The numerical results are in good agreement with known exact solutions and the existing schemes in literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Muhammad Abbas ◽  
Ahmad Abd. Majid ◽  
Ahmad Izani Md. Ismail ◽  
Abdur Rashid

A new two-time level implicit technique based on cubic trigonometric B-spline is proposed for the approximate solution of a nonclassical diffusion problem with nonlocal boundary constraints. The standard finite difference approach is applied to discretize the time derivative while cubic trigonometric B-spline is utilized as an interpolating function in the space dimension. The technique is shown to be unconditionally stable using the von Neumann method. Several numerical examples are discussed to exhibit the feasibility and capability of the technique. TheL2andL∞error norms are also computed at different times for different space size steps to assess the performance of the proposed technique. The technique requires smaller computational time than several other methods and the numerical results are found to be in good agreement with known solutions and with existing schemes in the literature.


Filomat ◽  
2016 ◽  
Vol 30 (3) ◽  
pp. 853-861 ◽  
Author(s):  
Ozlem Ersoy ◽  
Idiris Dag

In this study the Kuramoto-Sivashinsky (KS) equation has been solved using the collocation method, based on the exponential cubic B-spline approximation together with the Crank Nicolson. KS equation is fully integrated into a linearized algebraic equations. The results of the proposed method are compared with both numerical and analytical results by studying two text problems. It is found that the simulating results are in good agreement with both exact and existing numerical solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
R. C. Mittal ◽  
Rachna Bhatia

Modified cubic B-spline collocation method is discussed for the numerical solution of one-dimensional nonlinear sine-Gordon equation. The method is based on collocation of modified cubic B-splines over finite elements, so we have continuity of the dependent variable and its first two derivatives throughout the solution range. The given equation is decomposed into a system of equations and modified cubic B-spline basis functions have been used for spatial variable and its derivatives, which gives results in amenable system of ordinary differential equations. The resulting system of equation has subsequently been solved by SSP-RK54 scheme. The efficacy of the proposed approach has been confirmed with numerical experiments, which shows that the results obtained are acceptable and are in good agreement with earlier studies.


2017 ◽  
Vol 293 ◽  
pp. 311-319 ◽  
Author(s):  
Muhammad Yaseen ◽  
Muhammad Abbas ◽  
Ahmad Izani Ismail ◽  
Tahir Nazir

Author(s):  
Ozlem Ersoy Hepson ◽  
Idris Dag

AbstractIn this paper, we investigate the numerical solutions of the cubic nonlinear Schrödinger equation via the exponential cubic B-spline collocation method. Crank–Nicolson formulas are used for time discretization of the target equation. A linearization technique is also employed for the numerical purpose. Four numerical examples related to single soliton, collision of two solitons that move in opposite directions, the birth of standing and mobile solitons and bound state solution are considered as the test problems. The accuracy and the efficiency of the purposed method are measured by max error norm and conserved constants. The obtained results are compared with the possible analytical values and those in some earlier studies.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Seydi Battal Gazi Karakoç ◽  
Turgut Ak ◽  
Halil Zeybek

A septic B-spline collocation method is implemented to find the numerical solution of the modified regularized long wave (MRLW) equation. Three test problems including the single soliton and interaction of two and three solitons are studied to validate the proposed method by calculating the error normsL2andL∞and the invariantsI1,I2, andI3. Also, we have studied the Maxwellian initial condition pulse. The numerical results obtained by the method show that the present method is accurate and efficient. Results are compared with some earlier results given in the literature. A linear stability analysis of the method is also investigated.


2020 ◽  
Vol 9 (1) ◽  
pp. 432-448
Author(s):  
K. R. Raslan ◽  
Khalid K. Ali

AbstractIn this work, we introduce a new construct to the cubic B-spline collocation method in the three and four-dimensions. The cubic B-splines method format is displayed in one, two, three, and four-dimensions format. These constructions are of utmost importance in solving differential equations in their various dimensions, which have applications in many fields of science. The efficiency and accuracy of the proposed methods are demonstrated by its application to a few test problems in two, three, and four dimensions. Also, comparing the exact solutions and with the results obtained by using other numerical methods available in the literature as much as possible.


Sign in / Sign up

Export Citation Format

Share Document