scholarly journals Mathematical Model of Hybrid and Electric Cars Control System

2021 ◽  
Vol 320 ◽  
pp. 01014
Author(s):  
Vladimir Kozlovsky

The paper presents development results of the complex of simulation mathematical models of real-time and algorithms for a semi-natural test bench of the control system of a high-voltage storage battery of hybrid vehicles. They are designed to control the physical model of the test bench, simulating the characteristics of the cells of the high-voltage storage battery and other components that make up the high-voltage storage battery. This study aims to implement a complex of mathematical models and software with the required accuracy of parameters and signals that simulate the behavior of a real high-voltage battery. That intended for the development and testing of mathematical algorithms and software for the control system of a high-voltage battery of a hybrid vehicle. The main features of the developed models are an imitation of the characteristics of the cells of a high-voltage storage battery with the ability to set the initial state-of-charge (SOC) and change the charge during the operation of the model. The data were used to develop and evaluate a mathematical model of a high-voltage storage battery cell. The operating result contributes to the acceleration of the software development process for electrical complexes and control systems for high-voltage batteries for hybrid vehicles.

2021 ◽  
Vol 1 (2) ◽  
pp. 36-50
Author(s):  
A.N. Malyshev ◽  
◽  
YE.A. Grunenkov ◽  
V V. Debelov ◽  
M.D. Mizin ◽  
...  

The paper presents the results of mathematical and simulation modeling, as well as calculated and experimental dependencies, which make it possible to evaluate the operation of the insulation resistance monitoring system of the high-voltage power grid of a hybrid vehicle. The work also provides circuits for measuring insulation resistance, a mathematical model in the MATLAB Sim-ulink environment, and the peculiarities of the operation of the software and hardware simulation complex. The aim of the work is to obtain the most reliable mathematical and physical model of insulation resistance, to determine the architecture of a high voltage battery with the IRM system included in it, to identify the key functions and characteristics of the IRM system, to test the simulation system. The introduction justifies the importance of the IRM system and provides references to standards that govern the requirements for measuring and identifying utility faults. The block diagram of the high voltage battery control system is presented. The composition of its main elements is described. The functions and key characteristics of the IRM system are considered, typical characteristics of insulation monitoring systems are given. A schematic diagram of determining the insulation resistance of conductors and an electric circuit is clearly considered. An equivalent circuit of a differential DC amplifier with a unipolar power supply is presented, which is used to amplify small differential voltages on a shunt when changing large common-mode voltages, which is part of the measuring circuit. Mathematical and simulation modeling was carried out to evaluate the method for calculating the insulation resistance according to the well-known scheme, which is used when measuring using the three-voltmeter method. There was considered the mode of checking the the insulation control system, when several test procedures performed containing simulation of the fault and operating condition of the insulation by connecting and measuring the test resistance. The results of physical simulation of the IRM system and measurement of insulation resistance, voltage between each of the high voltage supply wires and the high voltage battery case, voltage between the wires, battery voltage were obtained. The actual insulation resistance was calculated. The conclusions explain the effectiveness of physical and simulation modeling, obtaining a reliable mathematical model and low error in modeling the insulation characteristics.


Author(s):  
Ігор Леонідович Левчук ◽  
Олег Петрович Мисов ◽  
Ксенія Олексіївна Фесенко ◽  
Антон Романович Шейкус

The subject of study in the article are methods for integrating mathematical models of chemical-technological processes implemented in universal modeling programs into modern SCADA systems for developing and improving methods for controlling these processes. The goal is to develop a control system for the synthesis of acetylene in a kinetic reactor, based on a computer model created in universal modeling programs and integrated into SCADA using open platform communications (OPC) technology. Tasks: to create a mathematical model of the process of synthesis of acetylene based on the selected universal modeling program; to develop a way to integrate the resulting model into modern SCADA using OPC technology; to develop in SCADA a control system for the process of synthesis of acetylene according to a mathematical model as part of a functional human-machine interface and control subsystem algorithms; get transient graphs and prove the efficiency of the control system. Conduct a process study using a mathematical model. The methods used are computer simulation of technological processes; OPC technology; SCADA based management. The following results are obtained. A control system for the acetylene synthesis process based on SCADA Trace-Mode and a mathematical model implemented in the ChemCAD package has been developed, while the model - control system information exchange is implemented based on OPC technology. Checked and proved the efficiency of the resulting control system. A mathematical study of the process was carried out, an experimental dependence of the yield of the final product, acetylene, on the temperature, and consumption of raw materials at the inlet of the reactor was established. Conclusions. The novelty of the results is as follows. A new method is proposed for integrating mathematical models implemented in the ChemCAD modeling package into modern SCADA, based on OPC technology. A study of the process of acetylene synthesis by a mathematical model was carried out, experimental dependences of the acetylene yield on temperature and ethylene consumption at the inlet of the synthesis reactor were obtained. An analysis of the obtained experimental dependences showed the need to use cascade control algorithms to increase the efficiency of controlling the process of acetylene synthesis in a kinetic reactor.


2015 ◽  
Vol 35 (9) ◽  
pp. 666-669 ◽  
Author(s):  
R. Kh. Kurmaev ◽  
A. S. Terenchenko ◽  
K. E. Karpukhin ◽  
V. S. Struchkov ◽  
E. V. Zinov’ev

Author(s):  
Yohichi Nakao ◽  
Hajime Niimiya ◽  
Takuya Obayashi

Water-driven spindle was developed for producing small and precise parts by the diamond turning processes. Rotational speed of the spindle can be controlled by the flowrate supplied to the spindle. The paper describes a newly developed rotary-type flow control valve that is designed for controlling rotational speed of the water-driven spindle. In particular, the paper focuses on the establishment of the mathematical model capable of representing the characteristics of the open loop control system composed of the pump, flow control valve and spindle. Mathematical models are then derived so that a feedback control system can be designed using the models. Performances of the flow control valve and the spindle are examined through simulation as well as experiments. It is then verified that the derived mathematical models are capable of representing the performance of the system. In addition, the required positioning accuracy of valve rotation for achieving desired control of the rotational speed of the spindle is considered based on the derived linearized mathematical model.


2012 ◽  
Vol 433-440 ◽  
pp. 81-85
Author(s):  
Shun Yuan ◽  
Da Wei Hu

Scholars, in order to find out the reason of the unknown reason flashover of insulators for high voltage over-head line, have made a lot of research on it. There have been two theories put forward, both of which infer the impetus after appearance of the partial arc, neither of them expound how is the partial arc formed. Based on the two theories, this paper puts forward a new theory - the theory of plasmoid shortens the valid insulation distance by which leads to the breakdown, of whose main viewpoint is whether the breakdown occurs depends on the comparation between the valid insulation distance on insulator’s surface and the shortened valid insulation distance on insulator’s space around by the plasmoid. Furthermore, we put forward the plasmoid mathematical model by kinetics equations of fluid system. Particularly, except for the fluid motion features, the influence by the self-generating electric field and magnetic field must be considered


Author(s):  
W. D. Zhu ◽  
N. Goudarzi ◽  
X. F. Wang ◽  
P. Kendrick

A variable electromotive-force generator (VEG), which is a modified generator with an adjustable overlap between the rotor and the stator, is proposed to improve the efficiency and/or expand the operational range of a conventional generator, with particular applications to wind turbines, hybrid vehicles, and so on. A mathematical model of the VEG is developed, and a novel prototype is designed and fabricated. The performance of the VEG with the active control system, which adjusts the overlap ratio based on the desired output power at different input speeds, is theoretically and experimentally studied. The results show that reducing the overlap between the rotor and the stator of the generator at low speeds results in a reduced torque loss of the generator and an increased rotational speed of the generator rotor.


Sign in / Sign up

Export Citation Format

Share Document