scholarly journals Advanced thermal lattice Boltzmann method for the simulation of latent heat thermal energy in a porous storage unit

2021 ◽  
Vol 321 ◽  
pp. 01004
Author(s):  
Riheb Mabrouk ◽  
Hassane Naji ◽  
Hacen Dhahri ◽  
Zohir Younsi

The current research expounds numerical investigation of key parameters effects, namely porosity ( ε= 0.4, 0.6, 0.7 and 0.8), Reynolds number (Re = 100, 200, 400 and 600) and Eckert number (Ec= 0, 1, 5 and 10) on the forced convective laminar flow and heat transfer through a horizontal porous channel filled with a metal foam structure impregnated with paraffin as a phase change material (PCM). The Darcy-Brinkman-Forchheimer model under the local thermal non-equilibrium (LTNE) condition is deemed at the representative elementary volume (REV) scale. The fully coupled equations of Navier-Stokes, Poisson’s equation, energy equations, and continuity equation were handled numerically via a thermal single relaxation time lattice Boltzmann method (TSRT-LBM). To facilitate implementation, all LB equations are based on the same speed discretization scheme (D2Q9). Three-population distribution functions were applied to simulate the fluid flow, and temperatures of the fluid and solid phases. Previously, the numerical model was validated by available cases. Then, a comprehensive investigation has been performed to investigate the influence of the aforementioned dimensionless numbers. All LBM results are found to be highly consistent with other numerical works. The outcomes reported that at lower porosities, the energy and exergy efficiencies increased with increasing Re and Ec. However, for large porosity values, the efficiencies were optimum for a critical Re ~ 400. To sum up, it can be stated that the implemented thermal lattice Boltzmann method has been demonstrated as a suitable approach study the thermal sensible energy storage.

2014 ◽  
Vol 695 ◽  
pp. 487-490
Author(s):  
Nor Azwadi Che Sidik ◽  
Aman Ali Khan

This paper provides numerical study of the effects of mixed convection on particles removal from a cavity using multi-relaxation time thermal lattice Boltzmann method (LBM) for compute the flow and isotherm characteristics in the bottom heated cavity located on a floor of horizontal channel. A point force scheme was applied for particles-fluid interactionand double-distribution function (DFF) was coupled with MRT thermal LBM to study the effects of various grashof number (Gr) and Aspect Ratio (AR) on the efficiency of particles removal. The results show that change in Grashof number and Aspect ratio causes a dramatic different in the flow pattern and particles removal efficiency.


Sign in / Sign up

Export Citation Format

Share Document