scholarly journals Impact of urban environment on land surface temperature in local climate zones

2021 ◽  
Vol 333 ◽  
pp. 02008
Author(s):  
Anna Gosteva ◽  
Sofia Ilina ◽  
Aleksandra Matuzko

The replacement of the natural landscape by artificial environment has led to changes in the ecosystem and physical properties of the surface, such as heat storage capacity, and thermal conductivity properties. These changes increase the difficulty of heat transfer between urban areas and the environment. Land surface temperature (LST) images from various satellites are widely used to represent urban thermal environments, which are more convenient and intuitive way. LST maps provide full spatial coverage, which distinguishes them from air temperature data obtained from meteorological stations. The study of LST according to the Landsat 8 data of Krasnoyarsk city over the past 10 years allowed the authors to talk about the observation of constant seasonal urban heat islands (UHI). For a more detailed consideration of the urban environment, this study further considers urban landscapes, thus the idea of local climate zone (LCZ) is introduced to study these diverse impacts in addition to the traditional map of LST. And analysis of the interaction of UHI and LCZ.

Author(s):  
T. D. Mushore

<p><strong>Abstract.</strong> This study sought to determine Local Climate Zones (LCZs) in Harare metropolitan City, using Landsat 8 multi-spectral and multi-temporal data. The World Urban Database and Access Portal Tool (WUDAPT) and Support Vector Machine classifiers were applied. Training datasets were extracted from Google Earth as prescribed by the WUDAPT procedure. Before image classification, we tested the separability of the LCZs, using the Transformed Divergence Separability Index (TDSI) based on the digitized training datasets and Landsat 8 data. Derived LCZs were then linked with Landsat 8 derived Land Surface Temperature (LST) for the cool and hot seasons. TDSI values greater 1.9 were obtained indicating that LCZs were highly separable. Comparatively, the WUDAPT method produced more accurate LCZs results (Overall accuracy = 95.69%) than the SVM classifier (Overall accuracy = 89.86%) based on seasonal Landsat 8 data. However, SVM derived accuracies were within the acceptable range of at least 80% (overall accuracy) in literature. Further, LST was observed to be high in LCZs with high built-up density and low vegetation proportion, when compared to other zones. Due to high proportion of vegetation, sparsely built areas were at least 1&amp;thinsp;&amp;deg;C cooler. Although LCZs are usually linked at 2&amp;thinsp;m air temperature, they also strongly explain LST distribution. This work provides insight into the importance of mapping LCZs in third world countries where such information remains scarce.</p>


2020 ◽  
Vol 13 (4) ◽  
pp. 43-53
Author(s):  
Samrin Fatema ◽  
Dr. Abhisek Chakrabarty

The type of surface influences the temperature of a surface. If it is made of concrete or another hard material, the temperature will be higher. Hence it is essential to study the land surface temperature (LST) of urban areas. The LST is an important parameter in the estimation of radiation budgets and heat balance and is a controlling factor of dynamic climate changes. In this work, we made an effort to identify the LST of the Midnapore Kharagpur Development Authority planning region. Multi-temporal images acquired by Landsat 7 ETM+, Landsat 5 TM and Landsat 8 using OLI sensors on 3 May 2001, 7 May 2011 and 29 May 2019, respectively, were corrected for radiometric and geometric errors and processed to extract LULC classes and LST. Thermal remote sensing can be used to monitor the temperature and local climate of urban areas. This study has shown that the temperature varies across the surface according to land use. It was found that the urbanized area increased from 6.79% (40.39 sq. km) to 11.6% (69.2 sq. km) between 2001 and 2011 and from 11.6% (69.2 sq. km) to 17.22 % (102.79 sq. km) between 2011 and 2019. The LST study has shown that there has been a tremendous change in the spatial pattern of the temperature between 2001 and 2019. Whereas in 2001 the highest temperature did not exceed 34°C, by 2019 it had increased by nearly 8°C, reaching 41.29°C. So, the findings of this study are significant.


Author(s):  
Chunhong Zhao

The Local Climate Zones (LCZs) concept was initiated in 2012 to improve the documentation of Urban Heat Island (UHI) observations. Despite the indispensable role and initial aim of LCZs concept in metadata reporting for atmospheric UHI research, its role in surface UHI investigation also needs to be emphasized. This study incorporated LCZs concept to study surface UHI effect for San Antonio, Texas. LCZ map was developed by a GIS-based LCZs classification scheme with the aid of airborne Lidar dataset and other freely available GIS data. Then, the summer LST was calculated based Landsat imagery, which was used to analyse the relations between LST and LCZs and the statistical significance of the differences of LST among the typical LCZs, in order to test if LCZs are able to efficiently facilitate SUHI investigation. The linkage of LCZs and land surface temperature (LST) indicated that the LCZs mapping can be used to compare and investigate the SUHI. Most of the pairs of LCZs illustrated significant differences in average LSTs with considerable significance. The intra-urban temperature comparison among different urban classes contributes to investigate the influence of heterogeneous urban morphology on local climate formation.


Urban Climate ◽  
2019 ◽  
Vol 27 ◽  
pp. 259-271 ◽  
Author(s):  
Terence Darlington Mushore ◽  
Timothy Dube ◽  
Moven Manjowe ◽  
Wester Gumindoga ◽  
Abel Chemura ◽  
...  

2021 ◽  
Vol 921 (1) ◽  
pp. 012004
Author(s):  
A Ardiyansyah ◽  
A Munir ◽  
A Gabric

Abstract Numerous studies have shown that there is a positive correlation between the increase of urban built-up areas with elevated Surface Urban Heat Island (UHI) temperature. It can be considered that SUHI is a by-product of urbanisation. The study found that SUHI in Makassar City is seasonal dependent. High surface temperature tends to occur in the dry season within the urban centre, expanding to the South-Eastern. Furthermore, by combining land surface temperature and Local Climate Zone (LCZ) classification scheme, 16 out of 17 local climate zones were identified, excluding LCZ 7 (light built) within the observation year. In detailed, the combination of LCZ 3 class (compact low rise) and LCZ 10 class (industrial), occupied more than 80 % of the total built-up category with a surface temperature range of 11° C and 16° C respectively. Furthermore, the result indicates a homogenous surface temperature within LCZ 3 with a lower SD of 1.40° C compared to LCZ 10 of 1.95° C. Also, the study explored the correlation of various urban and non-urban indices using artificial neural network. Based on the model used, the indices showed poor correlation with LCZ 3 but adversely correlates to LCZ 10. A final loss value of 0.222 in LCZ 10 was obtained. In contrast, LCZ 3 resulted in high final loss value of 146.554. The result indicated that there are other variables which should be considered in exploring SUHI correlation within LCZ 3 (compact low rise) in Makassar City. In contrast, LCZ 10 (industrial) correlate positively with three urban indices, consisting of NDBI (43.94), BI (37.79), and NDBal (34.77). In brief, the result indicated that SUHI phenomenon in LCZ 3 was poorly represented by the model, whereas the level of city development can be predicted better using LCZ 10 (industrial) areas.


2018 ◽  
Vol 55 (4C) ◽  
pp. 129
Author(s):  
Nguyen Bac Giang

This paper presents the analysis of the effect of urban green space types on land surface temperature in Hue city. Data are collected with temperature monitoring results from each green space type and the interpretation of surface temperature based on Landsat 8 satellite image data to determine temperatures at different times of the year. Results showed that there was a significant correlation between types of urban green space and the surface temperature. Types of green space with a large area and vegetation indexes have a greater effect on temperature than areas with a smaller green space do. Green space types including forest green space, dedicated green space and agriculture green space have the most effect on the surface temperature. The forest area has the greatest influence on the temperature with a temperature difference of more than 1.6 degrees Celsius at 9:00 in the daytime. Besides, the results extracted from satellite images also show that the area of urban green space going to be reduced makes a contribution to increase the surface temperature of urban areas. The study results have established foundation for planning the green spaces in climate change challenges in Hue City.


2021 ◽  
Vol 16 (3) ◽  
Author(s):  
Rajeev Shankhwar ◽  
Rajlakshmi Datta ◽  
Navendra Uniyal

Dehradun city is the capital of Uttarakhand state of India. Evidence from the past research and literature [e.g. CDP 2007, Singh et al 2013, Gupta et al 2014] shows that in the late 80s, Dehradun city was much greener compared to the present condition. In the current study, we tried to identify the correlation between land surface temperature (LST) with Forest cover density classes (FCDC) and built-up area with open land. The current study reveals that there is a relationship between FCDC and LST in the study area. The range of LST recorded is between 32.07 to 43.99 °C. Among all the classes, minimum LST record in VDF class is 32.07°C and maximum LST record in built-up area 43.99°C. The present study shows the importance of vegetation cover in urban areas to reduce LST, air temperature and maintain the urban microclimate as well as to help reduce air pollution.


Urban Climate ◽  
2020 ◽  
Vol 34 ◽  
pp. 100700 ◽  
Author(s):  
Jun Yang ◽  
Yixuan Zhan ◽  
Xiangming Xiao ◽  
Jianhong Cecilia Xia ◽  
Wei Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document