scholarly journals Design of a hydrogen-powered bicycle for sustainable mobility

2022 ◽  
Vol 334 ◽  
pp. 06012
Author(s):  
Paolo Di Giorgio ◽  
Giovanni Di Ilio ◽  
Gabriele Scarpati ◽  
Giovanni Erme ◽  
Elio Simeoni ◽  
...  

Hydrogen-powered vehicles are emerging as a key source for a clean and sustainable mobility scenario. In particular, hydrogen technologies have a great potential for light mobility in urban areas, where traffic congestion may cause very high levels of local pollution. In this context, hybrid fuel cell/battery vehicles represent a promising solution, since they allow for extended driving range and short recharge time, which are two of the major concerns related to electric propulsion, in general. In this work, a new plug-in fuel cell electric bicycle concept is presented, where the on-board energy storage is realized by means of an innovative system integrating a battery pack with a metal hydride hydrogen tank. This solution allows to achieve very high performance in terms of riding range, which are unattainable with traditional battery electric bicycles. In particular, the hybrid energy storage system is conceived to provide an optimal thermal management of the two integrated components. The proposed design is developed on the basis of typical duty cycles acquired during on-road measurements. A prototype of the bicycle is then realized and bench-tested in order to assess design consistency and to evaluate its performances. The results show that the riding range of the new hydrogen-fuelled bicycle is about three times higher than the one for a similar electric bicycle.

2019 ◽  
Vol 11 (20) ◽  
pp. 5743 ◽  
Author(s):  
Higinio Sánchez-Sáinz ◽  
Carlos-Andrés García-Vázquez ◽  
Francisco Llorens Iborra ◽  
Luis M. Fernández-Ramírez

The global energy system is changing, mainly to achieve sustainable transport technologies and clean electrical generation based on renewable sources. Thus, as fuels, electricity and hydrogen are the most promising transport technologies in order to reduce greenhouse emissions. On the other hand, photovoltaic and wind energies, including energy storage, have become the main sources of distributed generation. This study proposes a new optimal-technical sizing method based on the Simulink Design Optimization of a stand-alone microgrid with renewable energy sources and energy storage to provide energy to a wireless power transfer system to charge electric vehicles along a motorway and to a hydrogen charging station for fuel cell-powered buses. The results show that the design system can provide energy for the charging of electric vehicles along the motorway and produce the hydrogen consumed by the fuel cell-buses plus a certain tank reserve. The flexibility of the study allows the analysis of other scenarios, design requirements, configurations or types of microgrids.


2018 ◽  
Author(s):  
Sender Rocha dos Santos ◽  
Juliana C. M. S. Aranha ◽  
Fernando Augusto Cerri ◽  
Thiago Chiachio do Nascimento ◽  
Maria de Fátima Negreli Campos Rosolem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document