The renaissance of radio astronomy: towards the Square Kilometre Array

2016 ◽  
Vol 78-79 ◽  
pp. 21-44
Author(s):  
C. Ferrari
Author(s):  
Aziz Jiwani ◽  
Tim Colegate ◽  
Nima Razavi-Ghods ◽  
Peter J. Hall ◽  
Shantanu Padhi ◽  
...  

AbstractThe lowest frequency band (70–450 MHz) of the Square Kilometre Array (SKA) will consist of sparse aperture arrays grouped into geographically localised patches or stations. Signals from thousands of antennas in each station will be beamformed to produce station beams which form the inputs for the central correlator. Two-stage beamforming within stations can reduce SKA-low signal processing load and costs, but has not been previously explored for the irregular station layouts now favoured in radio astronomy arrays. This paper illustrates the effects of two-stage beamforming on sidelobes and effective area, for two representative station layouts (regular and irregular gridded tiles on an irregular station). The performance is compared with a single-stage, irregular station. The inner sidelobe levels do not change significantly between layouts, but the more distant sidelobes are affected by the tile layouts; regular tile creates diffuse, but regular, grating lobes. With very sparse arrays, the station effective area is similar between layouts. At lower frequencies, the regular tile significantly reduces effective area, hence sensitivity. The effective area is highest for a two-stage irregular station, but it requires a larger station extent than the other two layouts. Although there are cost benefits for stations with two-stage beamforming, we conclude that more accurate station modelling and SKA-low configuration specifications are required before design finalisation.


Author(s):  
Robert Lehmensiek ◽  
Ockert B. Jacobs ◽  
Nianhua Jiang ◽  
Evan C. Knox-Davies ◽  
Sarel J. Marais ◽  
...  

2021 ◽  
Vol 117 (11/12) ◽  
Author(s):  
Helga van der Merwe ◽  
Suzanne J. Milton ◽  
W. Richard J. Dean ◽  
Tim G. O'Connor ◽  
Joh R. Henschel

A part of the Square Kilometre Array (SKA) will be constructed in the northern Karoo of South Africa on approximately 135 000 ha of land. This land is formerly privately owned rangelands (farms) that were purchased by the South African National Research Foundation (NRF), on which the South African Radio Astronomy Observatory, as part of the global SKA project, will erect the SKA infrastructure. Additionally, a long-term environmental research programme will be established to investigate various dryland ecosystem components at a landscape scale. Livestock has been removed from the farms, and the area is now managed by the South African National Parks (SANParks) as the Meerkat National Park. The land-use and land cover changes present an unprecedented opportunity to study ecosystem dynamics. The property will be established as an NRF science park, incorporating an SKA research platform for radio astronomy and an environmental research platform of the South African Environmental Observation Network, with additional environmental research conducted by SANParks and their collaborators. We briefly describe current knowledge of the area’s environment, and report on past and contemporary changes in this part of the Karoo. We present a conceptual model for the larger landscape which considers possible future land-use scenarios, the projected trajectories of change under these scenarios, and factors influencing these trajectories. These deliberations represent the foundation for future research in this landscape and the development of an environmental observation research platform in the Karoo at SKA.


Author(s):  
Karl F. Warnick ◽  
Rob Maaskant ◽  
Marianna V. Ivashina ◽  
David B. Davidson ◽  
Brian D. Jeffs

Sign in / Sign up

Export Citation Format

Share Document