scholarly journals Spin period change and the magnetic fields of neutron stars in Be X-ray binaries in the SMC

2014 ◽  
Vol 64 ◽  
pp. 06004
Author(s):  
H. Klus ◽  
W.C.G. Ho ◽  
M.J. Coe ◽  
R.H.D. Corbet ◽  
L.J. Townsend
2003 ◽  
Vol 214 ◽  
pp. 215-217
Author(s):  
Q. Z. Liu ◽  
X. D. Li ◽  
D. M. Wei

The relation between the spin period (Ps) and the orbital period (Po) in high-mass X-ray binaries (HMXBs) is investigated. In order for Be/X-ray binaries to locate above the critical line of observable X-ray emission due to accretion, it is necessary for an intermediate orbital eccentricity to be introduced. We suggest that some peculiar systems in the Po − Ps diagram are caused by their peculiar magnetic fields.


2018 ◽  
Vol 14 (S346) ◽  
pp. 219-227
Author(s):  
Konstantin A. Postnov ◽  
Alexander G. Kuranov ◽  
Lev R. Yungelson

Abstract. Different accretion regimes onto magnetized NSs in HMXBs are considered: wind-fed supersonic (Bondi) regime at high accretion rates <math/> g s-1, subsonic settling regime at lower <math/> and supercritical disc accretion during Roche lobe overflow. In wind-fed stage, NSs in HMXBs reach equilibrium spin periods P* proportional to binary orbital period Pb. At supercritical accretion stage, the system may appear as a pulsating ULX. Population synthesis of Galactic HMXBs using standard assumptions on the binary evolution and NS formation is presented. Comparison of the model P* – Pb (the Corbet diagram), P* – Lx and Pb – Lx distributions with those for the observed HMXBs (including Be X-ray binaries) and pulsating ULXs suggests the importance of the reduction of P* in non-circular orbits, explaining the location of Be X-ray binaries in the model Corbet diagram, and the universal parameters of pulsating ULXs depending only on the NS magnetic fields.


2014 ◽  
Vol 191 (1-4) ◽  
pp. 293-314 ◽  
Author(s):  
Mikhail Revnivtsev ◽  
Sandro Mereghetti

2018 ◽  
Vol 14 (S346) ◽  
pp. 135-138
Author(s):  
ChangSheng Shi ◽  
ShuangNan Zhang ◽  
XiangDong Li

AbstractA few Be X-ray binaries might constitute a group of special sources because the neutron stars in them may have superstrong magnetic fields. Generally, the neutron stars have long spin periods and some emission lines are shown from the B type star, which is attributed to an equatorial disc. We re-build new dimensionless torque models and obtain the superstrong magnetic fields of the neutron stars in the Be X-ray binaries in Large Magellanic Cloud, Small Magellanic Cloud and Milky Way when the compressed magnetosphere is considered. Although our conclusions are obtained when the disk accretion mode is considered, the results may be applied the Be X-ray binaries with wind accretion mode. SXP1323 and 4U 2206+54, in which the magnetic fields of the NSs may be close to the maximum ‘virial’ value, are the best objects to explore superstrong magnetic field.


Author(s):  
Yunus Emre Bahar ◽  
Manoneeta Chakraborty ◽  
Ersin Göğüş

Abstract We present the results of our extensive binary orbital motion corrected pulsation search for 13 low-mass X-ray binaries. These selected sources exhibit burst oscillations in X-rays with frequencies ranging from 45 to 1 122 Hz and have a binary orbital period varying from 2.1 to 18.9 h. We first determined episodes that contain weak pulsations around the burst oscillation frequency by searching all archival Rossi X-ray Timing Explorer data of these sources. Then, we applied Doppler corrections to these pulsation episodes to discard the smearing effect of the binary orbital motion and searched for recovered pulsations at the second stage. Here we report 75 pulsation episodes that contain weak but coherent pulsations around the burst oscillation frequency. Furthermore, we report eight new episodes that show relatively strong pulsations in the binary orbital motion corrected data.


2003 ◽  
Vol 12 (05) ◽  
pp. 825-831 ◽  
Author(s):  
S. O. TAGIEVA ◽  
E. YAZGAN ◽  
A. ANKAY

We examined the fall-back disk models, and in general accretion, proposed to explain the properties of AXPs and SGRs. We checked the possibility of some gas remaining around the neutron star after a supernova explosion. We also compared AXPs and SGRs with the X-ray pulsars in X-ray binaries. We conclude that the existing models of accretion from a fall-back disk are insufficient to explain the nature of AXPs and SGRs.


Sign in / Sign up

Export Citation Format

Share Document