scholarly journals Lidar study of wind turbulence, low level jet streams, and atmospheric internal waves in the boundary layer of atmosphere

2018 ◽  
Vol 176 ◽  
pp. 06005
Author(s):  
Viktor Banakh ◽  
Igor Smalikho

The results of lidar study of wind turbulence, low level jet streams, and internal atmospheric waves in the stable boundary layer of atmosphere on the coast of Lake Baikal are presented. Few events of the atmospheric internal waves (AIWs) were registered during the experimental campaign. All the registered AIWs were observed in the presence of low level jet streams. Two dimensional time–height patterns of the wind turbulence dissipation rate during AIW events were obtained as well.

2010 ◽  
Vol 67 (10) ◽  
pp. 3384-3408 ◽  
Author(s):  
Adam J. French ◽  
Matthew D. Parker

Abstract Some recent numerical experiments have examined the dynamics of initially surface-based squall lines that encounter an increasingly stable boundary layer, akin to what occurs with the onset of nocturnal cooling. The present study builds on that work by investigating the added effect of a developing nocturnal low-level jet (LLJ) on the convective-scale dynamics of a simulated squall line. The characteristics of the simulated LLJ atop a simulated stable boundary layer are based on past climatological studies of the LLJ in the central United States. A variety of jet orientations are tested, and sensitivities to jet height and the presence of low-level cooling are explored. The primary impacts of adding the LLJ are that it alters the wind shear in the layers just above and below the jet and that it alters the magnitude of the storm-relative inflow in the jet layer. The changes to wind shear have an attendant impact on low-level lifting, in keeping with current theories for gust front lifting in squall lines. The changes to the system-relative inflow, in turn, impact total upward mass flux and precipitation output. Both are sensitive to the squall line–relative orientation of the LLJ. The variations in updraft intensity and system-relative inflow are modulated by the progression of the low-level cooling, which mimics the development of a nocturnal boundary layer. While the system remains surface-based, the below-jet shear has the largest impact on lifting, whereas the above-jet shear begins to play a larger role as the system becomes elevated. Similarly, as the system becomes elevated, larger changes to system-relative inflow are observed because of the layer of potentially buoyant inflowing parcels becoming confined to the layer of the LLJ.


1995 ◽  
Vol 76 (3) ◽  
pp. 211-232 ◽  
Author(s):  
Ann-Sofi Smedman ◽  
Hans Bergstr�m ◽  
Ulf H�gstr�m

2006 ◽  
Vol 63 (11) ◽  
pp. 2700-2719 ◽  
Author(s):  
Robert M. Banta ◽  
Yelena L. Pichugina ◽  
W. Alan Brewer

Abstract Profiles of mean winds and turbulence were measured by the High Resolution Doppler lidar in the strong-wind stable boundary layer (SBL) with continuous turbulence. The turbulence quantity measured was the variance of the streamwise wind velocity component σ2u. This variance is a component of the turbulence kinetic energy (TKE), and it is shown to be numerically approximately equal to TKE for stable conditions—profiles of σ2u are therefore equivalent to profiles of TKE. Mean-wind profiles showed low-level jet (LLJ) structure for most of the profiles, which represented 10-min averages of mean and fluctuating quantities throughout each of the six nights studied. Heights were normalized by the height of the first LLJ maximum above the surface ZX, and the velocity scale used was the speed of the jet UX, which is shown to be superior to the friction velocity u* as a velocity scale. The major results were 1) the ratio of the maximum value of the streamwise standard deviation to the LLJ speed σu/UX was found to be 0.05, and 2) the three most common σ2u profile shapes were determined by stability (or Richardson number Ri). The least stable profile shapes had the maximum σ2u at the surface decreasing to a minimum at the height of the LLJ; profiles that were somewhat more stable had constant σ2u through a portion of the subjet layer; and the most stable of the profiles had a maximum of σ2u aloft, although it is important to note that the Ri for even the most stable of the three profile categories averaged less than 0.20. The datasets used in this study were two nights from the Cooperative Atmosphere–Surface Exchange Study 1999 campaign (CASES-99) and four nights from the Lamar Low-Level Jet Project, a wind-energy experiment in southeast Colorado, during September 2003.


2020 ◽  
Vol 12 (6) ◽  
pp. 955 ◽  
Author(s):  
Viktor A. Banakh ◽  
Igor N. Smalikho ◽  
Andrey V. Falits

The paper presents the results of probing the stable atmospheric boundary layer in the coastal zone of Lake Baikal with a coherent Doppler wind lidar and a microwave temperature profiler. Two-dimensional height–temporal distributions of the wind velocity vector components, temperature, and parameters characterizing atmospheric stability and wind turbulence were obtained. The parameters of the low-level jets and the atmospheric waves arising in the stable boundary layer were determined. It was shown that the stable atmospheric boundary layer has an inhomogeneous fine scale layered structure characterized by strong variations of the Richardson number Ri. Layers with large Richardson numbers alternate with layers where Ri is less than the critical value of the Richardson number Ricr = 0.25. The channels of decreased stability, where the conditions are close to neutral stratification 0 < Ri < 0.25, arise in the zone of the low-level jets. The wind turbulence in the central part of the observed jets, where Ri > Ricr, is weak, increases considerably to the periphery of jets, at heights where Ri < Ricr. The turbulence may intensify at the appearance of internal atmospheric waves.


2007 ◽  
Vol 126 (3) ◽  
pp. 349-363 ◽  
Author(s):  
Yuji Ohya ◽  
Reina Nakamura ◽  
Takanori Uchida

Sign in / Sign up

Export Citation Format

Share Document