atmospheric waves
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 34)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Author(s):  
José Silva ◽  
Pedro Machado ◽  
Javier Peralta ◽  
Francisco Brasil ◽  
Sebastien Lebonnois ◽  
...  

<p>An atmospheric internal gravity wave is a oscillatory disturbance on an atmospheric layer in which buoyancy acts as the restoring force. As such, they can only exist in a continuously stably stratified atmosphere, that is, a fluid in which the static stability is positive and horizontal variations in pressure are negligible when compared to the vertical variations (in altitude) [Gilli et al. 2020; Peralta et al. 2008]. These waves are of particular interest because they represent an effective means of energy and momentum transport across various layers of a planetary atmosphere, as these waves can form on one atmospheric region and travel through the atmosphere, sometimes over great distances, and dump their contained energy upon wave dissipation or breaking [Alexander et al. 2010]. Given these properties, study of atmospheric waves on Venus becomes important as another tool to answer some of the fundamental question surrounding its atmosphere dynamics, mainly the origin and support mechanism of the remarkable superrotation of the atmosphere.<br>We present here the final results on a study conducted on the nightside lower cloud of Venus to detect and characterise mesoscale waves. This analysis was conducted with infrared imaging data from both the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) onboard Venus Express (Vex) [Svedhem et al. 2007] and the 2-micron camera (IR2) onboard Akatsuki [Nakamura et al. 2011, Satoh et al. 2016] space missions. We covered the entire VIRTIS-M-IR archive selecting the 1.74- and 2.25-micron wavelengths as well as all available images from the IR2 camera at 2.26 microns to ensure a most comprehensive survey and through image navigation and processing we were able to characterise approximately 300 wave packets across more than 5500 images over a broad range of latitudes on Venus. From these waves we retrieved basic morphological properties such as horizontal wavelength, number of crests and the full extent of the wave. Additionally, we were able to track the evolution of waves as they moved on the atmosphere, enabling some dynamical characterisation. The panel below shows examples of atmospheric waves observed in this study. Figures A-C show VIRTIS-M-IR images while figures D-F show IR2 data. All images have been subject to contrast enhancement techniques to improve observability of waves.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.664bc41e16a062149941261/sdaolpUECMynit/1202CSPE&app=m&a=0&c=4d76fa87765c4d96de6f9a4578649e21&ct=x&pn=gnp.elif&d=1" alt=""></p><p>Our goal was to provide a survey on atmospheric waves in the lower cloud as complete as possible, using two different instruments which cover in detail different sections of the globe of Venus over a long-time span, expanding on other studies performed by Peralta et al. (2008), (2019). With the larger data base, we discuss the nature of these waves, possible forcing mechanisms, and their relationship with the background atmosphere. Several questions remain however, such as how much energy do these waves transport in the cloud layer and how much do they contribute to Venus’ superrotation and if there is a dominant source of excitation for these waves. Full details of these results can be found in Silva et al. (2021) and we hope that these updated results can prove useful to recent and future models of Venus atmosphere as well as atmosphere of other slow rotators in the Solar System.</p><p><br><strong>References</strong></p><ul><li>Alexander M.J. et al, Quarterly Journal of the Royal Meteorological Society, vol. 136, pp. 1103-1124, 2010;</li> <li>Gilli G. et al, Journal of Geophys. Research – Planets, ID. e05873, 2020;</li> <li>Nakamura M. et al, Earth, Planets and Space, vol. 63, pp. 443-457, 2011;</li> <li>Peralta J. et al, Journal of Geophysical Research, vol. 113, ID. E00B18, 2008;</li> <li>Peralta J. et al, Icarus, vol. 333, pp. 177-182, 2019;</li> <li>Satoh T. et al, Earth, Planets and Space, vol. 68, ID. 74, 2016;</li> <li>Silva J. et al, A&A, vol. 649, ID. A34, 2021;</li> <li>Svedhem H. et al, Planetary and Space Science, vol. 55, pp. 1636-1652, 2007;</li> </ul>


The study of atmospheric–ionospheric connections is one of the most exciting and potentially important disciplines in geophysics. Changes in the ionospheric environment might be a method for earthquake prediction. The phenomenon of lithosphere-atmosphere-ionosphere (LAI) coupling is a promising method for earthquake prediction. Various experiments can be used to determine the variability of the ionosphere during earthquakes. The disturbance propagates upward as an atmospheric waves, creating stress, increasing temperature, as well as upper layer disturbances. By measuring ionospheric characteristics, it is quite difficult to determine the specific influence of the major earthquake on the ionospheric Total Electron Content (TEC).


Author(s):  
Hiroki Ando ◽  
Takagi Masahiro ◽  
Hideo Sagawa ◽  
Norihiko Sugimoto ◽  
Miho Sekiguchi ◽  
...  

Author(s):  
Petra Koucká Knížová ◽  
Jan Laštovička ◽  
Daniel Kouba ◽  
Zbyšek Mošna ◽  
Katerina Podolská ◽  
...  

The ionosphere represents part of the upper atmosphere. Its variability is observed on a wide-scale temporal range from minutes, or even shorter, up to scales of the solar cycle and secular variations of solar energy input. Ionosphere behavior is predominantly determined by solar and geomagnetic forcing. However, the lower-lying atmospheric regions can contribute significantly to the resulting energy budget. The energy transfer between distant atmospheric parts happens due to atmospheric waves that propagate from their source region up to ionospheric heights. Experimental observations show the importance of the involvement of the lower atmosphere in ionospheric variability studies in order to accurately capture small-scale features of the upper atmosphere. In the Part I Coupling, we provide a brief overview of the influence of the lower atmosphere on the ionosphere and summarize the current knowledge. In the Part II Coupling Evidences Within Ionospheric Plasma—Experiments in Midlatitudes, we demonstrate experimental evidence from mid-latitudes, particularly those based on observations by instruments operated by the Institute of Atmospheric Physics, Czech Academy of Sciences. The focus will mainly be on coupling by atmospheric waves.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Katherine Kornei

The auroral feature, first spotted by amateur astronomers in 2015, likely traces high-altitude atmospheric waves.


2021 ◽  
Author(s):  
Jadranka Sepic ◽  
Mira Pasaric ◽  
Iva Medugorac ◽  
Ivica Vilibic ◽  
Maja Karlovic ◽  
...  

<p>The northern and the eastern coast of the Adriatic Sea are occasionally affected by extreme sea-levels known to cause substantial material damage. These extremes appear due to the superposition of several ocean processes that occur at different periods, have different spatial extents, and are caused by distinct forcing mechanisms.</p><p>To better understand the extremes, hourly sea-level time series from six tide-gauge stations located along the northern and the eastern Adriatic coast (Venice, Trieste, Rovinj, Bakar, Split, Dubrovnik) were collected for the period of 1956 to 2015 (1984 to 2015 for Venice) and analysed. The time series have been checked for spurious data, and then decomposed using tidal analysis and filtering procedures. The following time series were thus obtained for each station: (1) trend; (2) seasonal signal; (3) tides; (4-7) sea-level oscillations at periods: (4) longer than 100 days, (5) from 10 to 100 days, (6) from 6 hours to 10 days, and (7) shorter than 6 hours. These bands correspond, respectively, to sea-level fluctuations dominantly forced by (but not restricted to): (1) climate change and land uplift and sinking; (2) seasonal changes; (3) tidal forcing; (4); quasi-stationary atmospheric and ocean circulation and climate variability patterns; (5) planetary atmospheric waves; (6) synoptic atmospheric processes; and (7) mesoscale atmospheric processes.</p><p>Positive sea-level extremes surpassing 99.95 and 99.99 percentile values, and negative sea-level extremes lower than 0.05 and 0.01 percentile values were extracted from the original time series for each station. It was shown that positive (negative) extremes are up to 50-100% higher (lower) in the northern than in the south-eastern Adriatic. Then, station-based distributions, return periods, seasonal distributions, event durations, and trends were estimated and assessed. It was shown that the northern Adriatic positive sea-level extremes are dominantly caused by synoptic atmospheric processes superimposed to positive tide (contributing jointly to ~70% of total extreme height), whereas more to the south-east, positive extremes are caused by planetary atmospheric waves, synoptic atmospheric processes, and tides (each contributing with an average of ~25%). As for the negative sea-level extremes, these are due to a combination of planetary atmospheric waves and tides: in the northern Adriatic tide provides the largest contribution (~60%) while in the south-eastern Adriatic the two processes are of similar impact (each contributing with an average of ~30%). The simultaneity of the events along the entire northern and eastern Adriatic coast was studied as well, revealing that positive extremes are strongly regional dependant, i.e. that they usually appear simultaneously only along one part of the coast, whereas negative extremes are more likely to appear along the entire coast at the same time.</p><p>Finally, it is suggested that the distribution of sea-level extremes along the south-eastern Adriatic coast can be explained as a superposition of tidal forcing and prevailing atmospheric processes, whereas for the northern Adriatic, strong topographic enhancement of sea-level extremes is also important.</p>


2021 ◽  
Author(s):  
Kosuke Heki ◽  
Yuki Takasaka

<p>Frequency spectra of seismic waves from a fault rupture reflects the size of the faults, i.e. relatively large amplitudes of long period waves are excited by larger earthquakes. Anomalies in rise times of the fault movements would also influence the spectra. For example, earthquakes characterized by slow faulting, known as tsunami earthquakes, excite large tsunamis for the amplitudes of short-period seismic waves. In this study, we compare amplitudes of long- and short-period atmospheric waves excited by vertical crustal movements associated with earthquake faulting. Such atmospheric waves often reach the ionospheric F region and cause coseismic ionospheric disturbances (CID) observed as oscillations in ionospheric total electron content (TEC), with ground Global Navigation Satellite System (GNSS) receivers. CID often includes long-period internal gravity wave (IGW) components in addition to short period acoustic wave (AW) components. The latter has a period of ~4 minutes and propagate by 0.8-1.0 km/s, while the former has a period of ~12 minutes and propagate as fast as 0.2-0.3 km/s. Here we compare amplitudes of these two different waves for five earthquakes, 2011 Tohoku-oki (Mw9.0), 2010 Maule (Mw8.8), 1994 Hokkaido-Toho-Oki (Mw8.3), 2003 Tokachi-oki (Mw8.0), and the 2010 Mentawai (Mw7.9) earthquakes, using data from regional dense GNSS networks. We found two important features, i.e. (1) larger earthquakes show larger IGW/AW amplitude ratios, and (2) Mentawai earthquake, a typical tsunami earthquake, exhibits abnormally large IGW amplitudes relative to AW amplitudes. These findings demonstrate that earthquakes with longer durations for faulting, or with longer times for vertical crustal movements, excite longer period atmospheric waves such as IGW more efficiently.</p>


2021 ◽  
Vol 09 (05) ◽  
pp. 901-919
Author(s):  
Ranis N. Ibragimov ◽  
Lauren D. Mongrain ◽  
Benjamin Stimmel ◽  
Olga Trozkaya ◽  
Guang Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document