scholarly journals Spin colour centres in SiC as a material platform for sensing and information processing at ambient conditions

2018 ◽  
Vol 190 ◽  
pp. 04001
Author(s):  
Andrey Anisimov ◽  
Victor Soltamov ◽  
Pavel Baranov ◽  
Georgy Astakhov ◽  
Vladimir Dyakonov

Atomic-scale colour centres in bulk and nanocrystalline SiC are promising systems for quantum photonics compatible with fiber optics, quantum information processing and sensing at ambient conditions. Colour centres which acts as stable single photon sources in SiC can be key elements for quantum photonics and communications. It has been shown that there are at least two families of colour centres in SiC with S = 1 and S = 3/2, which have the property of optical alignment of the spin levels even at room temperature and above. The spin state can be initialized, manipulated and readout by means of optically detected magnetic resonance (ODMR), level anticrossing and cross-relaxation. Recently, we observed the effects of “hole burning” in the ODMR spectra, which made it possible to narrow the ODMR line by approximately an order of magnitude, which substantially increases the possibilities of technological applications of spin centres.

Author(s):  
Lei Tang ◽  
Keyu Xia

Optical isolation is important for protecting a laser from damage due to the detrimental back reflection of light. It typically relies on breaking Lorentz reciprocity and normally is achieved via the Faraday magneto-optical effect, requiring a strong external magnetic field. Single-photon isolation, the quantum counterpart of optical isolation, is the key functional component in quantum information processing, but its realization is challenging. In this chapter, we present all-optical schemes for isolating the backscattering from single photons. In the first scheme, we show the single-photon isolation can be realized by using a chiral quantum optical system, in which a quantum emitter asymmetrically couples to nanowaveguide modes or whispering-gallery modes with high optical chirality. Secondly, we propose a chiral optical Kerr nonlinearity to bypass the so-called dynamical reciprocity in nonlinear optics and then achieve room-temperature photon isolation with low insertion loss. The concepts we present may pave the way for quantum information processing in an unconventional way.


2009 ◽  
Vol 07 (04) ◽  
pp. 811-820 ◽  
Author(s):  
FENG MEI ◽  
YA-FEI YU ◽  
ZHI-MING ZHANG

Large scale quantum information processing requires stable and long-lived quantum memories. Here, using atom-photon entanglement, we propose an experimentally feasible scheme to realize decoherence-free quantum memory with atomic ensembles, and show one of its applications, remote transfer of unknown quantum state, based on laser manipulation of atomic ensembles, photonic state operation through optical elements, and single-photon detection with moderate efficiency. The scheme, with inherent fault-tolerance to the practical noise and imperfections, allows one to retrieve the information in the memory for further quantum information processing within the reach of current technology.


2001 ◽  
Vol 48 (13) ◽  
pp. 1983-1995 ◽  
Author(s):  
Mohamed Bourennane ◽  
Anders Karlsson ◽  
Juan Pena Ciscar ◽  
Markus Mathés

2016 ◽  
Vol 2 (5) ◽  
pp. e1501772 ◽  
Author(s):  
Kenzo Makino ◽  
Yosuke Hashimoto ◽  
Jun-ichi Yoshikawa ◽  
Hideaki Ohdan ◽  
Takeshi Toyama ◽  
...  

A fundamental element of quantum information processing with photonic qubits is the nonclassical quantum interference between two photons when they bunch together via the Hong-Ou-Mandel (HOM) effect. Ultimately, many such photons must be processed in complex interferometric networks. For this purpose, it is essential to synchronize the arrival times of the flying photons and to keep their purities high. On the basis of the recent experimental success of single-photon storage with high purity, we demonstrate for the first time the HOM interference of two heralded, nearly pure optical photons synchronized through two independent quantum memories. Controlled storage times of up to 1.8 μs for about 90 events per second were achieved with purities that were sufficiently high for a negative Wigner function confirmed with homodyne measurements.


Sign in / Sign up

Export Citation Format

Share Document