scholarly journals A next-generation ground array for the detection of ultrahigh-energy cosmic rays: the Fluorescence detector Array of Single-pixel Telescopes (FAST)

2019 ◽  
Vol 210 ◽  
pp. 06003
Author(s):  
Toshihiro Fujii ◽  
Max Malacari ◽  
Justin Albury ◽  
Jose A. Bellido ◽  
Ladislav Chytka ◽  
...  

The origin and nature of ultrahigh-energy cosmic rays (UHECRs) is one of the most intriguing and important mysteries in astroparticle physics. The two largest observatories currently in operation, the Telescope Array Experiment in central Utah, USA, and the Pierre Auger Observatory in western Argentina, have been steadily observing UHECRs in both hemispheres for over a decade. We highlight the latest results from both of these experiments, and address the requirements for a next-generation UHECR observatory. The Fluorescence detector Array of Single-pixel Telescopes (FAST) is a design concept for a next-generation UHECR observa-tory, addressing the requirements for a large-area, low-cost detector suitable for measuring the properties of the highest energy cosmic rays with an unprecedented aperture. We have developed a full-scale prototype consisting of four 200 mm photomultiplier-tubes at the focus of a segmented mirror of 1.6 m in diameter. Over the last three years, we installed three such prototypes at the Black Rock Mesa site of the Telescope Array Experiment. These telescopes have been steadily taking data since installation. We report on preliminary results of the full-scale FAST prototypes, including measurements of distant ultraviolet lasers and UHECRs. Futhermore, we discuss our plan to install an additional identical FAST prototype at the Pierre Auger Observatory. Possible benefits to the Telescope Array and the Pierre Auger Observatory include a comparison of the transparency of the atmosphere above both experiments, a study of the systematic uncertainty associated with their existing fluorescence detectors, and a cross-calibration of their energy and Xmax scales.

2019 ◽  
Vol 197 ◽  
pp. 02002
Author(s):  
Dusan Mandat ◽  
Toshihiro Fujii ◽  
Max Malacari ◽  
John Farmer ◽  
Xiaochen Ni ◽  
...  

The Fluorescence detector Array of Single-pixel Telescopes (FAST) is a proposed low-cost, largearea, next-generation experiment for the detection of ultrahigh-energy cosmic rays (UHECRs) via the atmospheric fluorescence technique. Two FAST telescopes are currently installed and operating at the Black Rock Mesa site of the Telescope Array Experiment in Utah, USA. Knowledge of the properties of the atmosphere above the detector is of utmost importance for the analysis and reconstruction of the energy and trajectory of UHECRs measured with an atmospheric fluorescence telescope. The FAST experiment uses all sky camera (FASCam) and sky quality monitor (SQM) for the detection of clouds and quantification of the night-sky background light in the field-of-view of the telescopes. Measurements of a vertically-fired ultra-violet laser at a distance of 21 km from the FAST telescopes are used to infer the transparency of the atmosphere above the detector through comparison with simulations.


2019 ◽  
Vol 208 ◽  
pp. 15004 ◽  
Author(s):  
Toshihiro Fujii

The origin and nature of ultrahigh-energy cosmic rays (UHECRs) are one of the most intriguing mysteries in particle astrophysics and astronomy. The two largest observatories, the Pierre Auger Observatory and the Telescope Array Experiment, are steadily observing UHECRs in both hemispheres in order to better understand their origin and associated acceleration mechanisms at the highest energies. We highlight their latest results including on-going upgrades, AugerPrime and TA×4, and then address the requirements for a next-generation observatory. We share recent updates and perspectives for a future ground array of fluorescence detectors, addressing the requirements for a large-area, low-cost detector suitable for measuring the properties of the highest energy cosmic rays with an unprecedented aperture.


2019 ◽  
Vol 209 ◽  
pp. 01002
Author(s):  
Esteban Roulet

I describe some of the results on ultrahigh-energy cosmic rays that have been obtained with the Pierre Auger Observatory. These include measurements of the spectrum, composition and anisotropies. Possible astrophysical scenarios that account for these results are discussed.


2019 ◽  
Vol 210 ◽  
pp. 04002
Author(s):  
James H. Matthews ◽  
Anthony R. Bell ◽  
Anabella T. Araudo ◽  
Katherine M. Blundell

The origin of ultrahigh energy cosmic rays (UHECRs) is an open question. In this proceeding, we first review the general physical requirements that a source must meet for acceleration to 10-100 EeV, including the consideration that the shock is not highly relativistic. We show that shocks in the backflows of radio galaxies can meet these requirements. We discuss a model in which giant-lobed radio galaxies such as Centaurus A and Fornax A act as slowly-leaking UHECR reservoirs, with the UHECRs being accelerated during a more powerful past episode. We also show that Centaurus A, Fornax A and other radio galaxies may explain the observed anisotropies in data from the Pierre Auger Observatory, before examining some of the difficulties in associating UHECR anisotropies with astrophysical sources.


2019 ◽  
Vol 209 ◽  
pp. 01029
Author(s):  
Daniela Mockler

The flux of ultra-high energy cosmic rays above 3×1017 eV has been measured with unprecedented precision at the Pierre Auger Observatory. The flux of the cosmic rays is determined by four different measurements. The surface detector array provides three data sets, two formed by dividing the data into two zenith angle ranges, and one obtained from a nested, denser detector array. The fourth measurement is obtained with the fluorescence detector. By combing all four data sets, the all-sky flux of cosmic rays is determined. The spectral features are discussed in detail and systematic uncertainties are addressed.


2011 ◽  
Vol 20 (supp01) ◽  
pp. 118-131
Author(s):  
◽  
CAROLA DOBRIGKEIT

The Pierre Auger Observatory in Argentina is the largest cosmic ray detector array ever built. Its main goal is to measure cosmic rays of energy above 1018 eV with unprecedented statistics and precision. Although the construction of its baseline design was completed in mid-2008, the Observatory has been taking data continuously since January 2004. The main results obtained with the Pierre Auger Observatory are presented, with emphasis on the energy spectrum and studies of composition and arrival directions of the ultrahigh energy cosmic rays. Features observed in the energy spectrum are discussed. Results about cosmic ray composition inferred from systematic studies of the average depth of shower maximum and its fluctuations are reviewed. Recent results of studies of arrival direction distributions and correlations with nearby extragalactic objects are presented.


2017 ◽  
Author(s):  
Toshihiro Fujii ◽  
Max Malacari ◽  
Justin Albury ◽  
Jose Bellido ◽  
John Farmer ◽  
...  

2017 ◽  
Vol 2017 (06) ◽  
pp. 026-026 ◽  
Author(s):  
A. Aab ◽  
P. Abreu ◽  
M. Aglietta ◽  
I. Al Samarai ◽  
I.F.M. Albuquerque ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document