scholarly journals Development of a regenerated Beryllium target and a thermal test facility for Compact Accelerator-based Neutron Sources

2020 ◽  
Vol 231 ◽  
pp. 03003
Author(s):  
Jean-François Muraz ◽  
Daniel Santos ◽  
Véronique Ghetta ◽  
Julien Giraud ◽  
Julien Marpaud ◽  
...  

Recently, the possibility to use compact accelerators coupled to high current ion sources for the production of intense low energy proton or deuteron beams has motivated many research laboratories to develop accelerator based neutrons sources for several purposes, including Neutron Capture Therapy (NCT). The NCT needs a high flux, about 10 9 n.cm-2.s-1, of thermal neutrons (E<10 keV) at the tumour site. Up to now, the NCT required neutron flux was mainly delivered by nuclear reactors. However, the production of such neutron flux is now possible using proton or deuteron beams on specific targets able to stand a high pow er (~15- 30 kW) on a small area (~10 cm2). This specific target design, materials and supports, has to cope with extreme physical constraints . The LPSC team has conceived an original solution formed by a thin (8 μm) rotating beryllium target depos ited on a graphite wheel and coupled with a beryllium sputtering device for periodic 9Be layer restoration. By means of 9Be (d,n) 10B nuclear reaction, this target irradiated by a 10- -20 mA deuteron beam (1.45 MeV) should produce the required neutron flux. In order to validate the target design of the neutron flux production and the beryllium target thermal capabilities, we built a 30 cm diameter rotating Beryllium target prototype and a compact electron beam line able to deliver a power density of 3kW/cm2.

2011 ◽  
Vol 86 (9-11) ◽  
pp. 2322-2325 ◽  
Author(s):  
A. Klix ◽  
A. Domula ◽  
U. Fischer ◽  
D. Gehre ◽  
P. Pereslavtsev ◽  
...  

2020 ◽  
Vol 239 ◽  
pp. 23001
Author(s):  
Javier Praena ◽  
Francisco Garcia-Infantes ◽  
Rafael Rivera ◽  
Laura Fernandez-Maza ◽  
Fernando Arias de Saavedra ◽  
...  

The International Fusion Materials Irradiation Facility - Demo Oriented NEutron Source (IFMIF-DONES) is a single-sited novel Research Infrastructure for testing, validation and qualification of the materials to be used in a fusion reactor. Recently, IFMIF-DONES has been declared of interest by ESFRI (European Strategy Forum on Research Infrastructures) and its European host city would be Granada (Spain). In spite the first and most important application of IFMIF-DONES related to fusion technology, the unprecedented neutron flux available could be exploited without modifying the routine operation of IFMIF-DONES. Thus, it is already planned an experimental hall for a complementary program with neutrons. Also, a complementary program on the use of the deuteron beam could help IFMIF-DONES to be more sustainable. In the present work, we study radioisotope production with deuterons of 177Lu. The results show the viability of IFMIF-DONES for such production in terms of the needs of a territory of small-medium size. Also the study suggests that new nuclear data at higher deuteron energies are mandatory for an accurate study in this field.


Author(s):  
Clifford K. Ho ◽  
Siri S. Khalsa

A new method is described to determine irradiance distributions on receivers and targets from heliostats or other collectors for concentrating solar power applications. The method uses a CCD camera, and, unlike previous beam characterization systems, it does not require additional sensors, calorimeters, or flux gauges on the receiver or target. In addition, spillage can exist (the beam does not need to be contained within the target). The only additional information required besides the digital images recorded from the CCD camera is the direct normal irradiance and the reflectivity of the receiver. Methods are described to calculate either an average reflectivity or a reflectivity distribution for the receiver using the CCD camera. The novel feature of this new PHLUX method is the use of recorded images of the sun to scale both the magnitude of each pixel value and the subtended angle of each pixel. A test was performed to evaluate the PHLUX method using a heliostat beam on the central receiver tower at the National Solar Thermal Test Facility in Albuquerque, NM. Results showed that the PHLUX method was capable of producing an accurate flux map of the heliostat beam with a relative error in the peak flux of 2%.


1994 ◽  
Vol 116 (3) ◽  
pp. 137-141 ◽  
Author(s):  
D. C. Smith ◽  
E. E. Rush ◽  
C. W. Matthews ◽  
J. M. Chavez ◽  
P. A. Bator

The molten salt pump and valve (P&V) test loops at Sandia National Laboratories (SNL) National Solar Thermal Test Facility (NSTTF) operated between Jan. 1988 and Oct. 1990. The purpose of the P&V test was to demonstrate the performance, reliability, and service life of full-scale hot and cold salt pumps and valves for use in commercial central receiver solar power plants. The P&V test hardware consists of two pumped loops; the “Hot Loop” to simulate the hot (565°C) side of the receiver and the “Cold Loop” to simulate the receiver’s cold (285°C) side. Each loop contains a pump and five valves sized to be representative of a conceptual 60-MWe commercial solar power plant design. The hot loop accumulated over 6700 hours of operation and the cold loop over 2500 hours of operation. This project has demonstrated that standard commercial scale pump and valve designs will work in molten salt. The test also exposed some pitfalls that must be avoided in specifying such equipment. Although certainly not all of the pitfalls were discovered, careful design and specification should result in reliable or at least workable equipment.


Sign in / Sign up

Export Citation Format

Share Document