foil activation
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 28)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
pp. 110110
Author(s):  
Roberto García-Baonza ◽  
Gonzalo F. García-Fernández ◽  
Eduardo Gallego ◽  
Héctor R. Vega-Carrillo

Author(s):  
Milan Stefanik ◽  
Eva Simeckova ◽  
Pavel Bem ◽  
Jan Stursa ◽  
Vaclav Zach ◽  
...  

2021 ◽  
Vol 57 (7) ◽  
Author(s):  
F. Tárkányi ◽  
S. Takács ◽  
F. Ditrói ◽  
Z. Szűcs ◽  
K. Brezovcsik ◽  
...  

AbstractDeuteron induced reactions on natural bismuth targets were investigated with the stacked foil activation technique up to 50 MeV. Excitation functions for the reactions $$^{\mathrm {209}}$$ 209 Bi(d,xn)$$^{\mathrm {207,206,205}}$$ 207 , 206 , 205 Po, Bi(d,x)$$^{\mathrm {207,205}}$$ 207 , 205 Bi and $$^{\mathrm {209}}$$ 209 Bi(d,x)$$^{\mathrm {203}}$$ 203 Pb obtained from gamma-spectra of decay products were compared with the results of our ALICE-D and EMPIRE-D model calculations, with the result of TALYS code taken from TENDL-2019 on-line library and the results of the only measurement performed earlier. Thick target yields were deduced from the fitted experimental cross sections.


Author(s):  
Safwan Shalbi ◽  
Norazlianie Sazali ◽  
Wan Norharyati Wan Salleh

The thermal column at the TRIGA PUSPATI (RTP) research reactor can produce thermal neutron. However, the optimization on the thermal neutron flux produced should be performed to gain a sufficient thermal neutron for boron neutron capture therapy purpose. Thus, the objective of this review is to optimize the thermal neutron flux by designing the collimator with different materials at the thermal column. In order to fulfil the requirement, set by the IAEA standard, the study of Boron Neutron Capture Therapy (BNCT) around the world was being reviewed to study the suitable measurement, material, design, and modification for BNCT at the thermal column of TRIGA MARK-II, Malaysia. Initially, the BNCT mechanisms and history was review. Then, this paper review on the design and modifications for BNCT purpose around the world. Based on this review, suitable material and design can be used for the BNCT in Malaysia. Moreover, this paper also reviews the current status of BNCT at the RTP with the measurement of the thermal neutron flux was conducted along the thermal column at 250 kW. The thermal column of RTP was divided into 3 phases (Phase 1, Phase 2 and Phase 3) so that an accurate measurement can be obtained by using gold foil activation method. This value was used as a benchmark for the neutron flux produced from the thermal column. The reviewed demonstrated that the final thermal neutron flux produced was significantly for BNCT purpose.


2021 ◽  
Vol 5 (2) ◽  
pp. 8
Author(s):  
Sam H. Giegel ◽  
Aaron E. Craft ◽  
Glen C. Papaioannou ◽  
Andrew T. Smolinski ◽  
Chad L. Pope

The Neutron Radiography Reactor at Idaho National Laboratory (INL) has two beamlines extending radially outward from the east and north faces of the reactor core. The control rod withdrawal procedure has recently been altered, potentially changing power distribution of the reactor and thus the properties of the neutron beams, calling for characterization of the neutron beams. The characterization of the East Radiography Station involved experiments used to measure the following characteristics: Neutron flux, neutron beam uniformity, cadmium ratio, image quality, and the neutron energy spectrum. The ERS is a Category-I neutron radiography facility signifying it has the highest possible rank a radiography station can achieve. The thermal equivalent neutron flux was measured using gold foil activation and determined to be 9.61 × 106 ± 2.47 × 105 n/cm2-s with a relatively uniform profile across the image plane. The cadmium ratio measurement was performed using bare and cadmium-covered gold foils and measured to be 2.05 ± 2.9%, indicating large epithermal and fast neutron content in the beam. The neutron energy spectrum was measured using foil activation coupled with unfolding algorithms provided by the software package Unfolding with MAXED and GRAVEL (UMG). The Monte-Carlo N-Particle (MCNP6) transport code was used to assist with the unfolding process. UMG, MCNP6, and measured foil activities were used to determine a neutron energy spectrum which was implemented into the MCNP6 model of the east neutron beam to contribute to future studies.


Author(s):  
D. Chiesa ◽  
C. Cazzaniga ◽  
M. Nastasi ◽  
M. Rebai ◽  
C. D. Frost ◽  
...  

Author(s):  
Cheol Ho Pyeon

AbstractThe subcritical multiplication factor is considered an important index for recognizing, in the core, the number of fission neutrons induced by an external neutron source. In this study, the influences of different external neutron sources on core characteristics are carefully monitored. Here, the high-energy neutrons generated by the neutron yield at the location of the target are attained by the injection of 100 MeV protons onto these targets. In actual ADS cores, liquid Pb–Bi has been selected as a material for the target that generates spallation neutrons and for the coolant in fast neutron spectrum cores. The neutron spectrum information is acquired by the foil activation method in the 235U-fueled and Pb–Bi-zoned fuel region of the core, modeling the Pb–Bi coolant core locally around the central region. The neutron spectrum is considered an important parameter for recognizing information on neutron energy at the target. Also, the neutron spectrum evaluated by reliable methodologies could contribute to the accurate prediction of reactor physics parameters in the core through numerical simulations of desired precision. In the present chapter, experimental analyses of high-energy neutrons over 20 MeV are conducted after adequate preparation of experimental settings.


2020 ◽  
Vol 190 (3) ◽  
pp. 307-319
Author(s):  
Shobha Ghodke ◽  
V Sathian ◽  
Yashoda Singh ◽  
Tarun Patel ◽  
S Santra

Abstract A single stage vacuum-type proton recoil neutron telescope (PRT) was used for accurate measurement of 14.57 MeV neutron fluence rate from an indigenously developed D-T neutron generator at Purnima, BARC. The telescope consists of a polyethylene radiator having 4 cm diameter and CsI (Tl) scintillation crystal having thickness 1.5 mm and 4 cm diameter separated by 20.5 cm kept in a vacuum chamber. The neutron detection efficiency of the telescope for 14.57 MeV neutrons was calculated analytically using n-p scattering cross section data from Evaluated Nuclear Data File VII and also evaluated using fluka simulation. The relativistic transformation of n-p differential scattering cross section from centre-of-mass to laboratory system was used for calculating the efficiency of PRT. The 14.57 MeV neutron fluence rate was also measured using copper foils. The comparison of fluence rate measured using PRT and copper foil activation techniques is presented in this paper. The total uncertainty in measurement using PRT and copper foil activation technique is found to be 3.93 and 6.97%, respectively.


Sign in / Sign up

Export Citation Format

Share Document