scholarly journals National Criticality Experiments Research Center (NCERC) - capabilities and recent measurements

2020 ◽  
Vol 239 ◽  
pp. 18003
Author(s):  
Nicholas Thompson ◽  
Jesson Hutchinson ◽  
Rian Bahran ◽  
David Hayes ◽  
William Myers ◽  
...  

The National Criticality Experiments Research Center (NCERC) located at the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS) and operated by Los Alamos National Laboratory (LANL) is home to four critical assemblies which are used to support of range of missions, including nuclear criticality safety and nuclear nonproliferation. Additionally, subcritical systems can also be assembled at NCERC. NCERC is providing critical and subcritical experiments valuable to the nuclear data community and experiments performed at NCERC are often published as benchmarks in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook. This manuscript will give a broad overview of recent experiments performed at NCERC, upcoming experiments, and why integral measurements are important and useful to the nuclear data community. The four critical assemblies are GODIVA IV, FLATTOP, COMET, and PLANET. GODIVA IV is a cylindrical metal fast burst reactor, the fourth in the GODIVA series that dates back to the 1950’s. FLATTOP is an highly enriched uranium (HEU) or Pu core reflected by natural uranium. COMET and PLANET are vertical lift assemblies, where one half of the reactor can be lifted to the upper half of the reactor to create a critical system. Some recent experiments include various critical intermediate energy assemblies with lead, and subcritical measurements of plutonium reflected by copper, tungsten, and nickel. Work is also underway to make a better measurement of the critical mass of neptunium, using a neptunium sphere surrounded by nickel shells. Additionally, measurements will be performed next year with HEU shells from Rocky Flats. These HEU shells will be stacked together to make larger systems, allowing for a large range of criticality (from subcritical to delayed critical). Other upcoming measurements include an HEU critical assembly sensitive to intermediate energy neutrons.

2007 ◽  
Author(s):  
R. D. McKnight ◽  
M. E. Dunn ◽  
R. C. Little ◽  
J. R. Felty ◽  
J. N. McKamy

2021 ◽  
Vol 247 ◽  
pp. 17005
Author(s):  
Douglas G. Bowen ◽  
Travis M. Greene

The ANSI/ANS-8.1 standard, “Safety Standard for Operations with Fissionable Materials Outside Reactors,” has been available since 1964 as ASA N6.1-1964. In 1969, this standard was revised as ANSI N16.1-1969, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors.” This version of the standard includes a variety of subcritical limits (SCLs) for uniform aqueous solutions and metals containing fissile nuclides for 233U, 235U, and 239Pu. Furthermore, SCLs are also included for uranium-water lattices. In the 1983 version of ANSI/ANS-8.1 (a revision of ANSI N16.1-1975), the suite of SCLs in the standard expanded to include 235U enrichment limits for homogeneous uranium-water mixtures and dry/damp oxides, uniform aqueous solutions of low-enriched uranium, and uniform aqueous mixtures of Pu(NO3)4 containing 240Pu, in addition to the SCLs included in ANSI N16.1-1969. The SCLs have changed little in subsequent revisions (ANSI/ANS-8.1-1998 and ANSI/ANS-8.1-2014). The ANSI/ANS-8.1-2014 standard is currently being revised to include new SCLs (uranium metal and compounds with enrichments up to 20 wt. % 235U) and possible updates to the current SCLs already in the standard, although these SCLs will not be available to the nuclear criticality safety community for a number of years. The bases for these SCLs were documented in journal articles such as Nuclear Science and Engineering, and the American Nuclear Society’s meeting transactions; however, the bases were ambiguous enough that sites and regulators in the United States are reluctant to endorse them for safety purposes. The purpose of this paper is to present the results of a comparison study for the SCLs in the ANSI/ANS-8.1-2014 standard using modern codes and cross sections (SCALE/ENDF/B-VIII) to provide some assurance about their quality (bias and bias uncertainty) for use in nuclear criticality safety applications.


Separations ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 104
Author(s):  
Leah M. Arrigo ◽  
Jun Jiang ◽  
Zachary S. Finch ◽  
James M. Bowen ◽  
Staci M. Herman ◽  
...  

The measurement of radioactive fission products from nuclear events has important implications for nuclear data production, environmental monitoring, and nuclear forensics. In a previous paper, the authors reported the optimization of an intra-group lanthanide separation using LN extraction resin from Eichrom Technologies®, Inc. and a nitric acid gradient. In this work, the method was demonstrated for the separation and quantification of multiple short-lived fission product lanthanide isotopes from a fission product sample produced from the thermal irradiation of highly enriched uranium. The separations were performed in parallel in quadruplicate with reproducible results and high decontamination factors for 153Sm, 156Eu, and 161Tb. Based on the results obtained here, the fission yields for 144Ce, 153Sm, 156Eu, and 161Tb are consistent with published fission yields. This work demonstrates the effectiveness of the separations for the intended application of short-lived lanthanide fission product analysis requiring high decontamination factors.


Sign in / Sign up

Export Citation Format

Share Document