scholarly journals High order iterative methods for matrix inversion and regularized solution of fredholm integral equation of first kind with noisy data

2018 ◽  
Vol 22 ◽  
pp. 01002
Author(s):  
Suzan Cival Buranay ◽  
Ovgu Cidar Iyikal

The motivation of the present work is to propose high order iterative methods with a recurrence formula for approximate matrix inversion and provide regularized solution of Fredholm integral equation of first kind with noisy data by an algorithm using the proposed methods. From the given family of methods of orders p = 7,11,15,19 are applied to solve problems of Fredholm integral equation of first kind. From the literature, iterative methods of same orders are used to solve the considered problems and numerical comparisons are shown through tables and figures.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Isaac Fried

The asymptotic form of the Taylor-Lagrange remainder is used to derive some new, efficient, high-order methods to iteratively locate the root, simple or multiple, of a nonlinear function. Also derived are superquadratic methods that converge contrarily and superlinear and supercubic methods that converge alternatingly, enabling us not only to approach, but also to bracket the root.


2010 ◽  
Vol 43 (3) ◽  
Author(s):  
Le Thi Phuong Ngoc ◽  
Le Xuan Truong ◽  
Nguyen Thanh Long

2018 ◽  
Vol 41 (17) ◽  
pp. 7263-7282 ◽  
Author(s):  
Cory L. Howk ◽  
José L. Hueso ◽  
Eulalia Martínez ◽  
Carles Teruel

2015 ◽  
Vol 22 (4) ◽  
pp. 585-595 ◽  
Author(s):  
S. Amat ◽  
J. A. Ezquerro ◽  
M. A. Hernández-Verón

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
S. Amat ◽  
C. Bermúdez ◽  
S. Busquier ◽  
M. J. Legaz ◽  
S. Plaza

This paper is devoted to the study of a class of high-order iterative methods for nonlinear equations on Banach spaces. An analysis of the convergence under Kantorovich-type conditions is proposed. Some numerical experiments, where the analyzed methods present better behavior than some classical schemes, are presented. These applications include the approximation of some quadratic and integral equations.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Suzan C. Buranay ◽  
Ovgu C. Iyikal

High order iterative methods with a recurrence formula for approximate matrix inversion are proposed such that the matrix multiplications and additions in the calculation of matrix polynomials for the hyperpower methods of orders of convergence p=4k+3, where k≥1 is integer, are reduced through factorizations and nested loops in which the iterations are defined using a recurrence formula. Therefore, the computational cost is lowered from κ=4k+3 to κ=k+4 matrix multiplications per step. An algorithm is proposed to obtain regularized solution of ill-posed discrete problems with noisy data by constructing approximate Schur-Block Incomplete LU (Schur-BILU) preconditioner and by preconditioning the one step stationary iterative method. From the proposed methods of approximate matrix inversion, the methods of orders p=7,11,15,19 are applied for approximating the Schur complement matrices. This algorithm is applied to solve two problems of Fredholm integral equation of first kind. The first example is the harmonic continuation problem and the second example is Phillip’s problem. Furthermore, experimental study on some nonsymmetric linear systems of coefficient matrices with strong indefinite symmetric components from Harwell-Boeing collection is also given. Numerical analysis for the regularized solutions of the considered problems is given and numerical comparisons with methods from the literature are provided through tables and figures.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Meilan Sun ◽  
Chuanqing Gu

The function-valued Padé-type approximation (2DFPTA) is used to solve two-dimensional Fredholm integral equation of the second kind. In order to compute 2DFPTA, a triangle recursive algorithm based on Sylvester identity is proposed. The advantage of this algorithm is that, in the process of calculating 2DFPTA to avoid the calculation of the determinant, it can start from the initial value, from low to high order, and gradually proceeds. Compared with the original two methods, the numerical examples show that the algorithm is effective.


Sign in / Sign up

Export Citation Format

Share Document