scholarly journals Optimization of Secondary Sources Configuration in Two-Dimensional Space Based on Sound Field Decomposition and Sparsity-Inducing Regularization

Author(s):  
Kean Chen ◽  
Jian Xu ◽  
Lei Wang ◽  
Bing Zhou

During the design of transducers configuration for an active noise control system, current optimization methods need to predetermine the error sensors configuration, which significantly increases the workload of later optimization of the secondary sources configuration. In this study, a new method free from specific error sensors configuration information is presented that higher order microphones are used to capture the sound field so as to formulate the cost function in wave domain. In addition, according to sparsity characteristics of the primary sound field, sparsity-inducing regularization is introduced to optimize the secondary sources configuration, including the number and positions, by calculating a sparse approximate solution to underdetermined equations. Effects of the number of candidate secondary sources are discussed, and the comparison with the uniform configuration and the optimized configuration using the genetic algorithm is performed. Results show that the proposed method can optimize the secondary sources configuration effectively independent of the error sensors configuration information. The noise reduction of the proposed method is close to that by the genetic algorithm, while other evaluation metrics for the system are much better, which would benefit the stability of active noise control system.

2021 ◽  
pp. 107754632110016
Author(s):  
Guo Long ◽  
Yawen Wang ◽  
Teik C Lim

Active noise control systems are generally application-specific, and an appropriate algorithm with an optimal configuration is desirable in the first stage of active noise control system design and deployment. This study presents a design of the subband active noise control system with optimal parameters for a practical broadband active noise control. Although the delayless subband active noise control has gained wide attention for broadband noise cancellation, an optimal design remains a challenge because of the complex interplay between multiple factors such as spectral leakage, delay and weight stacking distortion subject to a number of configurable parameters, and weight stacking method. The configurable parameters can hardly be optimized independently because the active noise control performance depends on the combined configuration. A simple near black box active noise control algorithm optimization model is thus established by incorporating the genetic algorithm optimization into the parametric design of the delayless subband algorithm. The automated process does not require an understanding of the performance characteristics for different parameters. The significance of applying the automated genetic algorithm optimization to the complex multiparameter nonlinear active noise control design is revealed by numerical simulations, particularly for the multichannel low-frequency broadband active noise control system configured with the delayless subband algorithms. This provides a way for the optimal parametric design of subband active noise control before being used in a practical complex scenario.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
J. Ignacio Palacios ◽  
Jordi Romeu ◽  
Andreu Balastegui

Global active control of sound can be achieved inside enclosures under low modal acoustic fields. However, the performance of the system depends largely on the localization of the elements of the control system. For a purely acoustic active control system in which secondary acoustic sources (loudspeakers) and pressure transducers (microphones) as error sensors are used, several optimization strategies have been proposed. These strategies usually rely on partial approximation to the problem, focusing on the study of number and localization of secondary sources without considering error transducers, or selecting the best positions of secondary sources and error transducers of an initial set of candidate locations for these elements. The strategy presented here for tonal global active noise control of steady states comprises two steps; the first is rather common for this sort of problem and its goal is to find the best locations for secondary sources and their strengths by minimizing the potential energy of the enclosure. The second step is the localization of the error transducer, which ensures the results of the first step. It is analytically demonstrated that for a single input single output system, the optimum location of error transducers is at a null pressure point of the optimally attenuated acoustic field. It is also shown that in a real case, the optimum position is that of a minimum of the optimally attenuated acoustic field. Finally, a numerical validation of this principle is carried out in a parallelipedic enclosure.


2009 ◽  
Vol 17 (01) ◽  
pp. 83-107 ◽  
Author(s):  
CHRISTOPHER G. PROVATIDIS ◽  
SPIRIDON T. MOUZAKITIS ◽  
GEORGE N. CHARALAMPOPOULOS

This paper is concerned with the active control of sound fields in enclosures. Specifically, the numerical problem of determining the optimum locations of control sensors and actuators is addressed. A new method for determining the optimum secondary sources strength is proposed, based on the explicit prediction of the sound field, which makes the simulation of realistic acoustical applications feasible, in terms of the enclosure's boundary conditions. The irregular geometry of a car cabin with complex boundary conditions is used in order to demonstrate the application of the new method to a test case where the existing methods cannot theoretically apply without resolving to significant numerical error. The new method of determining the secondary sources strength is combined with a modified genetic and a gradient optimization algorithm so as to locate the optimum positions of active noise control transducers for global sound field control. The overall algorithm, constituting of the method for calculating the secondary sources' strength and the optimization algorithms, is adjusted with computational improvements for better performance.


2008 ◽  
Vol 08 (01) ◽  
pp. L51-L64 ◽  
Author(s):  
ALLAHYAR MONTAZERI ◽  
JAVAD POSHTAN ◽  
MOHAMMAD HOSSEIN KAHAIE

One of the main important aspects in designing an active control system is the optimization of position and number of sensors and actuators. In this paper this problem is addressed for the implementation of a multi-channel active noise control (ANC) system with the aim of global reduction of broadband noise in a telephone kiosk. This includes optimizing the locations for loudspeakers and microphones, finding proper size of the control system, i.e. the number of loudspeakers and microphones, and optimization of the control signals. The mean of acoustic potential energy in the enclosure in a frequency range of 50 Hz to 300 Hz is selected as the performance index for optimization purpose. Several genetic algorithms are proposed and compared to find the global minimum of this performance index. In order to have a better performance in reaching the global minimum, the parameters of these genetic algorithms are tuned, and the best genetic algorithm is selected among them. The main difference between the proposed algorithms is the used coding scheme. Numerical simulations of the acoustical potential energy and also sound pressure at the height where the head of a person may be located, confirms the optimality of the locations proposed by the genetic algorithm.


Sign in / Sign up

Export Citation Format

Share Document