scholarly journals A RUL prediction method of equipments based on MSDCNN-LSTM

Author(s):  
Chang Liu ◽  
Wenbai Chen

In order to solve the problems of high data dimension and insufficient consideration of time series correlation information, a multi-scale deep convolutional neural network and long-short-term memory (MSDCNN-LSTM) hybrid model is proposed for remaining useful life (RUL) of equipments. First, the sensor data is processed through normalization and sliding time window to obtain input samples; then multi-scale deep convolutional neural network (MSDCNN) is used to capture detailed spatial features, at the same time, time-dependent features are extracted for effective prediction combining with long short-term memory (LSTM). Experiments on simulation dataset of commercial modular aero-propulsion system show that, compared with other state-of-the-art methods, the prediction method proposed in this paper has achieved better RUL prediction results, especially for the prediction of the life of equipment with complex failure modes and operating conditions. The effect is obvious. It can be seen that the prediction method proposed in this paper is feasible and effective.

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 166 ◽  
Author(s):  
Jehn-Ruey Jiang ◽  
Juei-En Lee ◽  
Yi-Ming Zeng

This paper proposes two deep learning methods for remaining useful life (RUL) prediction of bearings. The methods have the advantageous end-to-end property that they take raw data as input and generate the predicted RUL directly. They are TSMC-CNN, which stands for the time series multiple channel convolutional neural network, and TSMC-CNN-ALSTM, which stands for the TSMC-CNN integrated with the attention-based long short-term memory (ALSTM) network. The proposed methods divide a time series into multiple channels and take advantage of the convolutional neural network (CNN), the long short-term memory (LSTM) network, and the attention-based mechanism for boosting performance. The CNN performs well for extracting features from data with multiple channels; dividing a time series into multiple channels helps the CNN extract relationship among far-apart data points. The LSTM network is excellent for processing temporal data; the attention-based mechanism allows the LSTM network to focus on different features at different time steps for better prediction accuracy. PRONOSTIA bearing operation datasets are applied to the proposed methods for the purpose of performance evaluation and comparison. The comparison results show that the proposed methods outperform the others in terms of the mean absolute error (MAE) and the root mean squared error (RMSE) of RUL prediction.


2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Seyed Majid Azimi ◽  
Maximilian Kraus ◽  
Reza Bahmanyar ◽  
Peter Reinartz

In this paper, we address various challenges in multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural Network module for more accurate and stable tracking. Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge, we are the first to use these two for regression-based Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions. In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while degrades the results for other cases. In addition, according to the results, L1 yields better results with respect to Huber loss for most of the scenarios. The presented results provide a deep insight into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for future research.


Author(s):  
Ning He ◽  
Cheng Qian ◽  
Lile He

Abstract As an important energy storage device, lithium-ion batteries have vast applications in daily production and life. Therefore, the remaining useful life prediction of such batteries is of great significance, which can maintain the efficacy and reliability of the system powered by lithium-ion batteries. For predicting remaining useful life of lithium-ion batteries accurately, an adaptive hybrid battery model and an improved particle filter are developed. Firstly, the adaptive hybrid model is constructed, which is a combination of empirical model and long-short term memory neural network model such that it could characterize battery capacity degradation trend more effectively. In addition, the adaptive adjustment of the parameters for hybrid model is realized via optimization technique. Then, the beetle antennae search based particle filter is applied to update the battery states offline constructed by the proposed adaptive hybrid model, which can improve the estimation accuracy. Finally, remaining useful life short-term prediction is realized online based on long short-term memory neural network rolling prediction combined historical capacity with online measurements and latest offline states and model parameters. The battery data set published by NASA is used to verify the effectiveness of proposed strategy. The experimental results indicate that the proposed adaptive hybrid model can well represent the battery degradation characteristics, and have a higher accuracy compared with other models. The short-term remaining useful life prediction results have good performance with the errors of 1 cycle, 3 cycles, and 1 cycle, above results indicate proposed scheme has a good performance on short-term remaining useful life prediction.


Sign in / Sign up

Export Citation Format

Share Document